Loading…

Profiling synaptic proteins identifies regulators of insulin secretion and lifespan

Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are t...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2008-11, Vol.4 (11), p.e1000283-e1000283
Main Authors: Ch'ng, Queelim, Sieburth, Derek, Kaplan, Joshua M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03
cites cdi_FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03
container_end_page e1000283
container_issue 11
container_start_page e1000283
container_title PLoS genetics
container_volume 4
creator Ch'ng, Queelim
Sieburth, Derek
Kaplan, Joshua M
description Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.
doi_str_mv 10.1371/journal.pgen.1000283
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313511187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202488513</galeid><doaj_id>oai_doaj_org_article_d72be8bfbdf140a98fba513ffac701b1</doaj_id><sourcerecordid>A202488513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLwoIXMyZNOmluhGXxY2BxxV28DWly0smSSWrSivvvzThVpyCoJJCQ87xvODk5RfEUoxUmDL-6DWP00q36DvwKI4SqhtwrTnFdkyWjiN4_2p8Uj1K6RYjUDWcPixPMESV1TU-L648xGOus78p052U_WFX2MQxgfSqtBj9YYyGVEbrRySHEVAZT5uCYNWUCFWGwwZfS69JZA6mX_nHxwEiX4Mm0Loqbt29uLt4vL6_ebS7OL5eKcTIsjZKK8obrihFoEeOoWa8rLhXhsmYsB2iVQV0ho7QhTINe15nWLTVUIrIonh9sexeSmJ4jCUwwqTHGDcvE5kDoIG9FH-1OxjsRpBU_DkLshIw5YwdCs6qFpjWtNpgiyRvTyhoTY6RiCLc4e72ebhvbHWiVXyZKNzOdR7zdii58FVXdVJzybHA2GcTwZYQ0iJ1NCpyTHsKYxJo3NaKU_hWsEEF8PxfFiwPYyZyB9Sbki9UeFucVqmjT5AwytfoDlYeGnVXBQy4_zAUvZ4LMDPBt6OSYkthcf_oP9sO_s1ef5-zZEbsF6YZtCm7c_7U0B-kBVDGkFMH8qghGYt8nPz-G2PeJmPoky54dV_O3aGoM8h1l5g6x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20309309</pqid></control><display><type>article</type><title>Profiling synaptic proteins identifies regulators of insulin secretion and lifespan</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ch'ng, Queelim ; Sieburth, Derek ; Kaplan, Joshua M</creator><contributor>Kim, Stuart K.</contributor><creatorcontrib>Ch'ng, Queelim ; Sieburth, Derek ; Kaplan, Joshua M ; Kim, Stuart K.</creatorcontrib><description>Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000283</identifier><identifier>PMID: 19043554</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cells ; Cellular proteins ; Developmental Biology/Aging ; Gene Expression Profiling ; Genetic aspects ; Genetics and Genomics ; Genetics and Genomics/Bioinformatics ; Insulin - metabolism ; Insulin Secretion ; Insulin-like growth factor 1 ; Insulin-like growth factors ; Longevity - genetics ; Membrane Proteins - analysis ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metabolic disorders ; Neural transmission ; Neuroscience/Neuronal and Glial Cell Biology ; Neuroscience/Neuronal Signaling Mechanisms ; Physiological aspects ; Presynaptic Terminals - metabolism ; Proteins ; Signal Transduction ; Somatomedins - metabolism ; Synapses - genetics ; Synapses - physiology</subject><ispartof>PLoS genetics, 2008-11, Vol.4 (11), p.e1000283-e1000283</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Ch'ng et al. 2008</rights><rights>2008 Ch'ng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ch'ng Q, Sieburth D, Kaplan JM (2008) Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan. PLoS Genet 4(11): e1000283. doi:10.1371/journal.pgen.1000283</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03</citedby><cites>FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582949/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19043554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kim, Stuart K.</contributor><creatorcontrib>Ch'ng, Queelim</creatorcontrib><creatorcontrib>Sieburth, Derek</creatorcontrib><creatorcontrib>Kaplan, Joshua M</creatorcontrib><title>Profiling synaptic proteins identifies regulators of insulin secretion and lifespan</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.</description><subject>Animals</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cells</subject><subject>Cellular proteins</subject><subject>Developmental Biology/Aging</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genetics and Genomics</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-like growth factor 1</subject><subject>Insulin-like growth factors</subject><subject>Longevity - genetics</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolic disorders</subject><subject>Neural transmission</subject><subject>Neuroscience/Neuronal and Glial Cell Biology</subject><subject>Neuroscience/Neuronal Signaling Mechanisms</subject><subject>Physiological aspects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>Somatomedins - metabolism</subject><subject>Synapses - genetics</subject><subject>Synapses - physiology</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLwoIXMyZNOmluhGXxY2BxxV28DWly0smSSWrSivvvzThVpyCoJJCQ87xvODk5RfEUoxUmDL-6DWP00q36DvwKI4SqhtwrTnFdkyWjiN4_2p8Uj1K6RYjUDWcPixPMESV1TU-L648xGOus78p052U_WFX2MQxgfSqtBj9YYyGVEbrRySHEVAZT5uCYNWUCFWGwwZfS69JZA6mX_nHxwEiX4Mm0Loqbt29uLt4vL6_ebS7OL5eKcTIsjZKK8obrihFoEeOoWa8rLhXhsmYsB2iVQV0ho7QhTINe15nWLTVUIrIonh9sexeSmJ4jCUwwqTHGDcvE5kDoIG9FH-1OxjsRpBU_DkLshIw5YwdCs6qFpjWtNpgiyRvTyhoTY6RiCLc4e72ebhvbHWiVXyZKNzOdR7zdii58FVXdVJzybHA2GcTwZYQ0iJ1NCpyTHsKYxJo3NaKU_hWsEEF8PxfFiwPYyZyB9Sbki9UeFucVqmjT5AwytfoDlYeGnVXBQy4_zAUvZ4LMDPBt6OSYkthcf_oP9sO_s1ef5-zZEbsF6YZtCm7c_7U0B-kBVDGkFMH8qghGYt8nPz-G2PeJmPoky54dV_O3aGoM8h1l5g6x</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Ch'ng, Queelim</creator><creator>Sieburth, Derek</creator><creator>Kaplan, Joshua M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20081101</creationdate><title>Profiling synaptic proteins identifies regulators of insulin secretion and lifespan</title><author>Ch'ng, Queelim ; Sieburth, Derek ; Kaplan, Joshua M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cells</topic><topic>Cellular proteins</topic><topic>Developmental Biology/Aging</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genetics and Genomics</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-like growth factor 1</topic><topic>Insulin-like growth factors</topic><topic>Longevity - genetics</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolic disorders</topic><topic>Neural transmission</topic><topic>Neuroscience/Neuronal and Glial Cell Biology</topic><topic>Neuroscience/Neuronal Signaling Mechanisms</topic><topic>Physiological aspects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>Somatomedins - metabolism</topic><topic>Synapses - genetics</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ch'ng, Queelim</creatorcontrib><creatorcontrib>Sieburth, Derek</creatorcontrib><creatorcontrib>Kaplan, Joshua M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ch'ng, Queelim</au><au>Sieburth, Derek</au><au>Kaplan, Joshua M</au><au>Kim, Stuart K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profiling synaptic proteins identifies regulators of insulin secretion and lifespan</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>4</volume><issue>11</issue><spage>e1000283</spage><epage>e1000283</epage><pages>e1000283-e1000283</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19043554</pmid><doi>10.1371/journal.pgen.1000283</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2008-11, Vol.4 (11), p.e1000283-e1000283
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313511187
source Publicly Available Content Database; PubMed Central
subjects Animals
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans - physiology
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cells
Cellular proteins
Developmental Biology/Aging
Gene Expression Profiling
Genetic aspects
Genetics and Genomics
Genetics and Genomics/Bioinformatics
Insulin - metabolism
Insulin Secretion
Insulin-like growth factor 1
Insulin-like growth factors
Longevity - genetics
Membrane Proteins - analysis
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metabolic disorders
Neural transmission
Neuroscience/Neuronal and Glial Cell Biology
Neuroscience/Neuronal Signaling Mechanisms
Physiological aspects
Presynaptic Terminals - metabolism
Proteins
Signal Transduction
Somatomedins - metabolism
Synapses - genetics
Synapses - physiology
title Profiling synaptic proteins identifies regulators of insulin secretion and lifespan
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profiling%20synaptic%20proteins%20identifies%20regulators%20of%20insulin%20secretion%20and%20lifespan&rft.jtitle=PLoS%20genetics&rft.au=Ch'ng,%20Queelim&rft.date=2008-11-01&rft.volume=4&rft.issue=11&rft.spage=e1000283&rft.epage=e1000283&rft.pages=e1000283-e1000283&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000283&rft_dat=%3Cgale_plos_%3EA202488513%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c793t-fcac4989d273eb079086629ac39a57789d42793d20fcdf37ded659d2db4f4a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20309309&rft_id=info:pmid/19043554&rft_galeid=A202488513&rfr_iscdi=true