Loading…
Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes
Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been c...
Saved in:
Published in: | PLoS genetics 2008-03, Vol.4 (3), p.e1000036-e1000036 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3 |
container_end_page | e1000036 |
container_issue | 3 |
container_start_page | e1000036 |
container_title | PLoS genetics |
container_volume | 4 |
creator | Skogsberg, Josefin Lundström, Jesper Kovacs, Alexander Nilsson, Roland Noori, Peri Maleki, Shohreh Köhler, Marina Hamsten, Anders Tegnér, Jesper Björkegren, Johan |
description | Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-)Apo(100/100)Mttp(flox/flox) Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies. |
doi_str_mv | 10.1371/journal.pgen.1000036 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313519879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202369965</galeid><doaj_id>oai_doaj_org_article_0628a124023e4368ae1442558fe68a23</doaj_id><sourcerecordid>A202369965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3</originalsourceid><addsrcrecordid>eNqVk-9r1DAYx4sobk7_A9GCMBC8s0maNH0jjPlrMBzo3NuQS5_2css1NWk3_e99bte5KzjQFtrk6ef7TfrkeZLkOcnmhBXk7coPodVu3jXQzkmGFxMPkn3COZsVeZY_3BnvJU9iXCHBZVk8TvaIZKLMOd9PzHnQbTTBdr31aJd2wdfW2bZJh9b4Kwgx1WkL_bUPl6mvU7P0DmIPwbtZgNj5NtorSHW_xFA0bvO0Me11aKBPcW8QnyaPau0iPBvfB8n3jx_Ojz_PTs8-nRwfnc6MpKSfMSpotjDFQpOCMCpZRStackJkzSutq4oJY3BOc1LRus5KmjFTS2aKAnheAztIXm59O-ejGvMTFWGEcVLKokTiZEtUXq9UF-xah1_Ka6tuAj40Sofe4l-oTFCpca2MMsiZkBpInlPOZQ04oQy9ZluveA3dsJi4jaFLHIHighMpkS_v5THp1Z3oVkiIKAVhjKL2zb3a9_bi6Gbnzg4qF5IQxN-NiRgWa6gMtH3Qbrri5Etrl6rxV4pSgSWTocHhaBD8jwGPW61tNOCcbsEPURVZnotcFgi-2oKNxpzZtvboZzawOqKYOlGWgiM1_wuFdwVra3wLWHEwFbyeCJDp4Wff6CFGdfLt63-wX_6dPbuYsoc77BK065fRu2HTJ3EK5lvQYOnHAPWfRJNMbVr1thTVplXV2Kooe7F7SHeisTfZb4TLO6s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70446487</pqid></control><display><type>article</type><title>Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Skogsberg, Josefin ; Lundström, Jesper ; Kovacs, Alexander ; Nilsson, Roland ; Noori, Peri ; Maleki, Shohreh ; Köhler, Marina ; Hamsten, Anders ; Tegnér, Jesper ; Björkegren, Johan</creator><contributor>Frankel, Wayne N.</contributor><creatorcontrib>Skogsberg, Josefin ; Lundström, Jesper ; Kovacs, Alexander ; Nilsson, Roland ; Noori, Peri ; Maleki, Shohreh ; Köhler, Marina ; Hamsten, Anders ; Tegnér, Jesper ; Björkegren, Johan ; Frankel, Wayne N.</creatorcontrib><description>Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-)Apo(100/100)Mttp(flox/flox) Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000036</identifier><identifier>PMID: 18369455</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apolipoprotein B-100 - genetics ; Atherosclerosis ; Atherosclerosis - etiology ; Atherosclerosis - genetics ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Cardiovascular disease ; Cardiovascular Disorders/Valvular Disease ; Cardiovascular Disorders/Vascular Biology ; Carrier Proteins - genetics ; Cholesterol ; Cholesterol - metabolism ; Computational Biology/Genomics ; Computational Biology/Systems Biology ; Experiments ; Foam Cells - metabolism ; Gene expression ; Gene Expression Profiling ; Genetics and Genomics/Animal Genetics ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Disease Models ; Genetics and Genomics/Functional Genomics ; Genetics and Genomics/Gene Expression ; Genetics and Genomics/Medical Genetics ; Genomes ; Heart attacks ; Humans ; Lipids ; Lipoproteins ; Macrophages - metabolism ; Medicin och hälsovetenskap ; Mice ; Mice, Knockout ; Mice, Mutant Strains ; Mortality ; Oligonucleotide Array Sequence Analysis ; Plasma ; Receptors, LDL - deficiency ; Receptors, LDL - genetics ; Reverse engineering ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Small Interfering - genetics ; Statins ; Stroke ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>PLoS genetics, 2008-03, Vol.4 (3), p.e1000036-e1000036</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Skogsberg et al. 2008</rights><rights>2008 Skogsberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Skogsberg J, Lundström J, Kovacs A, Nilsson R, Noori P, et al. (2008) Transcriptional Profiling Uncovers a Network of Cholesterol-Responsive Atherosclerosis Target Genes. PLoS Genet 4(3): e1000036. doi:10.1371/journal.pgen.1000036</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3</citedby><cites>FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265530/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265530/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,37012,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18369455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-46811$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:116961332$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Frankel, Wayne N.</contributor><creatorcontrib>Skogsberg, Josefin</creatorcontrib><creatorcontrib>Lundström, Jesper</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Nilsson, Roland</creatorcontrib><creatorcontrib>Noori, Peri</creatorcontrib><creatorcontrib>Maleki, Shohreh</creatorcontrib><creatorcontrib>Köhler, Marina</creatorcontrib><creatorcontrib>Hamsten, Anders</creatorcontrib><creatorcontrib>Tegnér, Jesper</creatorcontrib><creatorcontrib>Björkegren, Johan</creatorcontrib><title>Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-)Apo(100/100)Mttp(flox/flox) Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.</description><subject>Animals</subject><subject>Apolipoprotein B-100 - genetics</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - etiology</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular Disorders/Valvular Disease</subject><subject>Cardiovascular Disorders/Vascular Biology</subject><subject>Carrier Proteins - genetics</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Computational Biology/Genomics</subject><subject>Computational Biology/Systems Biology</subject><subject>Experiments</subject><subject>Foam Cells - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetics and Genomics/Animal Genetics</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Disease Models</subject><subject>Genetics and Genomics/Functional Genomics</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Genetics and Genomics/Medical Genetics</subject><subject>Genomes</subject><subject>Heart attacks</subject><subject>Humans</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Macrophages - metabolism</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Mutant Strains</subject><subject>Mortality</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Plasma</subject><subject>Receptors, LDL - deficiency</subject><subject>Receptors, LDL - genetics</subject><subject>Reverse engineering</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Statins</subject><subject>Stroke</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk-9r1DAYx4sobk7_A9GCMBC8s0maNH0jjPlrMBzo3NuQS5_2css1NWk3_e99bte5KzjQFtrk6ef7TfrkeZLkOcnmhBXk7coPodVu3jXQzkmGFxMPkn3COZsVeZY_3BnvJU9iXCHBZVk8TvaIZKLMOd9PzHnQbTTBdr31aJd2wdfW2bZJh9b4Kwgx1WkL_bUPl6mvU7P0DmIPwbtZgNj5NtorSHW_xFA0bvO0Me11aKBPcW8QnyaPau0iPBvfB8n3jx_Ojz_PTs8-nRwfnc6MpKSfMSpotjDFQpOCMCpZRStackJkzSutq4oJY3BOc1LRus5KmjFTS2aKAnheAztIXm59O-ejGvMTFWGEcVLKokTiZEtUXq9UF-xah1_Ka6tuAj40Sofe4l-oTFCpca2MMsiZkBpInlPOZQ04oQy9ZluveA3dsJi4jaFLHIHighMpkS_v5THp1Z3oVkiIKAVhjKL2zb3a9_bi6Gbnzg4qF5IQxN-NiRgWa6gMtH3Qbrri5Etrl6rxV4pSgSWTocHhaBD8jwGPW61tNOCcbsEPURVZnotcFgi-2oKNxpzZtvboZzawOqKYOlGWgiM1_wuFdwVra3wLWHEwFbyeCJDp4Wff6CFGdfLt63-wX_6dPbuYsoc77BK065fRu2HTJ3EK5lvQYOnHAPWfRJNMbVr1thTVplXV2Kooe7F7SHeisTfZb4TLO6s</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Skogsberg, Josefin</creator><creator>Lundström, Jesper</creator><creator>Kovacs, Alexander</creator><creator>Nilsson, Roland</creator><creator>Noori, Peri</creator><creator>Maleki, Shohreh</creator><creator>Köhler, Marina</creator><creator>Hamsten, Anders</creator><creator>Tegnér, Jesper</creator><creator>Björkegren, Johan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20080301</creationdate><title>Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes</title><author>Skogsberg, Josefin ; Lundström, Jesper ; Kovacs, Alexander ; Nilsson, Roland ; Noori, Peri ; Maleki, Shohreh ; Köhler, Marina ; Hamsten, Anders ; Tegnér, Jesper ; Björkegren, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Apolipoprotein B-100 - genetics</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - etiology</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular Disorders/Valvular Disease</topic><topic>Cardiovascular Disorders/Vascular Biology</topic><topic>Carrier Proteins - genetics</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Computational Biology/Genomics</topic><topic>Computational Biology/Systems Biology</topic><topic>Experiments</topic><topic>Foam Cells - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetics and Genomics/Animal Genetics</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Disease Models</topic><topic>Genetics and Genomics/Functional Genomics</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Genetics and Genomics/Medical Genetics</topic><topic>Genomes</topic><topic>Heart attacks</topic><topic>Humans</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Macrophages - metabolism</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Mutant Strains</topic><topic>Mortality</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Plasma</topic><topic>Receptors, LDL - deficiency</topic><topic>Receptors, LDL - genetics</topic><topic>Reverse engineering</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Statins</topic><topic>Stroke</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skogsberg, Josefin</creatorcontrib><creatorcontrib>Lundström, Jesper</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Nilsson, Roland</creatorcontrib><creatorcontrib>Noori, Peri</creatorcontrib><creatorcontrib>Maleki, Shohreh</creatorcontrib><creatorcontrib>Köhler, Marina</creatorcontrib><creatorcontrib>Hamsten, Anders</creatorcontrib><creatorcontrib>Tegnér, Jesper</creatorcontrib><creatorcontrib>Björkegren, Johan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skogsberg, Josefin</au><au>Lundström, Jesper</au><au>Kovacs, Alexander</au><au>Nilsson, Roland</au><au>Noori, Peri</au><au>Maleki, Shohreh</au><au>Köhler, Marina</au><au>Hamsten, Anders</au><au>Tegnér, Jesper</au><au>Björkegren, Johan</au><au>Frankel, Wayne N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>4</volume><issue>3</issue><spage>e1000036</spage><epage>e1000036</epage><pages>e1000036-e1000036</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-)Apo(100/100)Mttp(flox/flox) Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18369455</pmid><doi>10.1371/journal.pgen.1000036</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2008-03, Vol.4 (3), p.e1000036-e1000036 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313519879 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Animals Apolipoprotein B-100 - genetics Atherosclerosis Atherosclerosis - etiology Atherosclerosis - genetics Atherosclerosis - metabolism Atherosclerosis - pathology Cardiovascular disease Cardiovascular Disorders/Valvular Disease Cardiovascular Disorders/Vascular Biology Carrier Proteins - genetics Cholesterol Cholesterol - metabolism Computational Biology/Genomics Computational Biology/Systems Biology Experiments Foam Cells - metabolism Gene expression Gene Expression Profiling Genetics and Genomics/Animal Genetics Genetics and Genomics/Bioinformatics Genetics and Genomics/Disease Models Genetics and Genomics/Functional Genomics Genetics and Genomics/Gene Expression Genetics and Genomics/Medical Genetics Genomes Heart attacks Humans Lipids Lipoproteins Macrophages - metabolism Medicin och hälsovetenskap Mice Mice, Knockout Mice, Mutant Strains Mortality Oligonucleotide Array Sequence Analysis Plasma Receptors, LDL - deficiency Receptors, LDL - genetics Reverse engineering RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Small Interfering - genetics Statins Stroke TECHNOLOGY TEKNIKVETENSKAP |
title | Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20profiling%20uncovers%20a%20network%20of%20cholesterol-responsive%20atherosclerosis%20target%20genes&rft.jtitle=PLoS%20genetics&rft.au=Skogsberg,%20Josefin&rft.date=2008-03-01&rft.volume=4&rft.issue=3&rft.spage=e1000036&rft.epage=e1000036&rft.pages=e1000036-e1000036&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000036&rft_dat=%3Cgale_plos_%3EA202369965%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c821t-32620bc7ba1713283d2d295118f5daadd36cc951241d2ff09203cf83c77e54fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70446487&rft_id=info:pmid/18369455&rft_galeid=A202369965&rfr_iscdi=true |