Loading…
From classical genetics to quantitative genetics to systems biology: modeling epistasis
Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and i...
Saved in:
Published in: | PLoS genetics 2008-03, Vol.4 (3), p.e1000029-e1000029 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23 |
---|---|
cites | cdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23 |
container_end_page | e1000029 |
container_issue | 3 |
container_start_page | e1000029 |
container_title | PLoS genetics |
container_volume | 4 |
creator | Aylor, David L Zeng, Zhao-Bang |
description | Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments. |
doi_str_mv | 10.1371/journal.pgen.1000029 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313534537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202369958</galeid><doaj_id>oai_doaj_org_article_043c735d47b148bfa7a0af6237b4da9e</doaj_id><sourcerecordid>A202369958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxDkVInDLnFsxw4HpKqisFJFJT6P1sSeZF058TZ2Kvbf42UD7N7APng088zr8Xiy7DkploQK8vrWT-MAbrnpcFiSIq2yfpCdEs7pQrCCPTywT7InIdwWBeWyFo-zEyJpVTMmT7PvV6Pvc-0gBKvB5UkMo9Uhjz6_m2CINkK093gUCNsQsQ95Y73z3fZN3nuDzg5djhsbIgQbnmaPWnABn83nWfb16t2Xyw-L65v3q8uL64WuKhkXKEmpaypAV63hxGCtMVmmQV3JUkONghA0FEuiieSGV42sjdRUigLAlPQse7nX3Tgf1NyToAgllFPGqUjEak8YD7dqM9oexq3yYNUvhx87BWN6mUNVMKoF5YaJhjDZtCCggLYqqWiYSbUkrbfzbVPTo9E4xBHckehxZLBr1fl7VZYVZ2JX7vksMPq7CUNUvQ0anYMB_RSUKBjjoiIJXO7BDlJhdmh90tNpG-yt9gO2NvkvyqJMP1lzmRJeHSUkJuKP2MEUglp9_vQf7Md_Z2--HbPnB-wawcV18G6K1g_hGGR7UI8-hBHbPy0khdpN9--fVLvpVvN0p7QXh-3_mzSPM_0JbqT3-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70445761</pqid></control><display><type>article</type><title>From classical genetics to quantitative genetics to systems biology: modeling epistasis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Aylor, David L ; Zeng, Zhao-Bang</creator><contributor>Allison, David B.</contributor><creatorcontrib>Aylor, David L ; Zeng, Zhao-Bang ; Allison, David B.</creatorcontrib><description>Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000029</identifier><identifier>PMID: 18369448</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Animals ; Biology ; Computational Biology/Systems Biology ; Cyclic AMP-Dependent Protein Kinases - genetics ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Dictyostelium - enzymology ; Dictyostelium - genetics ; Epistasis, Genetic ; Experiments ; Gene Expression ; Gene Expression Profiling ; Genetics and Genomics/Complex Traits ; Genetics and Genomics/Gene Expression ; Models, Genetic ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Quantitative genetics ; Regression Analysis ; Systems Biology</subject><ispartof>PLoS genetics, 2008-03, Vol.4 (3), p.e1000029-e1000029</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Aylor and Zeng. 2008</rights><rights>2008 Aylor and Zeng. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Aylor DL, Zeng Z-B (2008) From Classical Genetics to Quantitative Genetics to Systems Biology: Modeling Epistasis. PLoS Genet 4(3): e1000029. doi:10.1371/journal.pgen.1000029</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</citedby><cites>FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265472/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265472/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18369448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Allison, David B.</contributor><creatorcontrib>Aylor, David L</creatorcontrib><creatorcontrib>Zeng, Zhao-Bang</creatorcontrib><title>From classical genetics to quantitative genetics to systems biology: modeling epistasis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biology</subject><subject>Computational Biology/Systems Biology</subject><subject>Cyclic AMP-Dependent Protein Kinases - genetics</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Dictyostelium - enzymology</subject><subject>Dictyostelium - genetics</subject><subject>Epistasis, Genetic</subject><subject>Experiments</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Genetics and Genomics/Complex Traits</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phenotype</subject><subject>Quantitative genetics</subject><subject>Regression Analysis</subject><subject>Systems Biology</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxDkVInDLnFsxw4HpKqisFJFJT6P1sSeZF058TZ2Kvbf42UD7N7APng088zr8Xiy7DkploQK8vrWT-MAbrnpcFiSIq2yfpCdEs7pQrCCPTywT7InIdwWBeWyFo-zEyJpVTMmT7PvV6Pvc-0gBKvB5UkMo9Uhjz6_m2CINkK093gUCNsQsQ95Y73z3fZN3nuDzg5djhsbIgQbnmaPWnABn83nWfb16t2Xyw-L65v3q8uL64WuKhkXKEmpaypAV63hxGCtMVmmQV3JUkONghA0FEuiieSGV42sjdRUigLAlPQse7nX3Tgf1NyToAgllFPGqUjEak8YD7dqM9oexq3yYNUvhx87BWN6mUNVMKoF5YaJhjDZtCCggLYqqWiYSbUkrbfzbVPTo9E4xBHckehxZLBr1fl7VZYVZ2JX7vksMPq7CUNUvQ0anYMB_RSUKBjjoiIJXO7BDlJhdmh90tNpG-yt9gO2NvkvyqJMP1lzmRJeHSUkJuKP2MEUglp9_vQf7Md_Z2--HbPnB-wawcV18G6K1g_hGGR7UI8-hBHbPy0khdpN9--fVLvpVvN0p7QXh-3_mzSPM_0JbqT3-g</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Aylor, David L</creator><creator>Zeng, Zhao-Bang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080301</creationdate><title>From classical genetics to quantitative genetics to systems biology: modeling epistasis</title><author>Aylor, David L ; Zeng, Zhao-Bang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biology</topic><topic>Computational Biology/Systems Biology</topic><topic>Cyclic AMP-Dependent Protein Kinases - genetics</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Dictyostelium - enzymology</topic><topic>Dictyostelium - genetics</topic><topic>Epistasis, Genetic</topic><topic>Experiments</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Genetics and Genomics/Complex Traits</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phenotype</topic><topic>Quantitative genetics</topic><topic>Regression Analysis</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aylor, David L</creatorcontrib><creatorcontrib>Zeng, Zhao-Bang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aylor, David L</au><au>Zeng, Zhao-Bang</au><au>Allison, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From classical genetics to quantitative genetics to systems biology: modeling epistasis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>4</volume><issue>3</issue><spage>e1000029</spage><epage>e1000029</epage><pages>e1000029-e1000029</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18369448</pmid><doi>10.1371/journal.pgen.1000029</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2008-03, Vol.4 (3), p.e1000029-e1000029 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313534537 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Alleles Animals Biology Computational Biology/Systems Biology Cyclic AMP-Dependent Protein Kinases - genetics Cyclic AMP-Dependent Protein Kinases - metabolism Dictyostelium - enzymology Dictyostelium - genetics Epistasis, Genetic Experiments Gene Expression Gene Expression Profiling Genetics and Genomics/Complex Traits Genetics and Genomics/Gene Expression Models, Genetic Mutation Oligonucleotide Array Sequence Analysis Phenotype Quantitative genetics Regression Analysis Systems Biology |
title | From classical genetics to quantitative genetics to systems biology: modeling epistasis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20classical%20genetics%20to%20quantitative%20genetics%20to%20systems%20biology:%20modeling%20epistasis&rft.jtitle=PLoS%20genetics&rft.au=Aylor,%20David%20L&rft.date=2008-03-01&rft.volume=4&rft.issue=3&rft.spage=e1000029&rft.epage=e1000029&rft.pages=e1000029-e1000029&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000029&rft_dat=%3Cgale_plos_%3EA202369958%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70445761&rft_id=info:pmid/18369448&rft_galeid=A202369958&rfr_iscdi=true |