Loading…

From classical genetics to quantitative genetics to systems biology: modeling epistasis

Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and i...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2008-03, Vol.4 (3), p.e1000029-e1000029
Main Authors: Aylor, David L, Zeng, Zhao-Bang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23
cites cdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23
container_end_page e1000029
container_issue 3
container_start_page e1000029
container_title PLoS genetics
container_volume 4
creator Aylor, David L
Zeng, Zhao-Bang
description Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.
doi_str_mv 10.1371/journal.pgen.1000029
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313534537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202369958</galeid><doaj_id>oai_doaj_org_article_043c735d47b148bfa7a0af6237b4da9e</doaj_id><sourcerecordid>A202369958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxDkVInDLnFsxw4HpKqisFJFJT6P1sSeZF058TZ2Kvbf42UD7N7APng088zr8Xiy7DkploQK8vrWT-MAbrnpcFiSIq2yfpCdEs7pQrCCPTywT7InIdwWBeWyFo-zEyJpVTMmT7PvV6Pvc-0gBKvB5UkMo9Uhjz6_m2CINkK093gUCNsQsQ95Y73z3fZN3nuDzg5djhsbIgQbnmaPWnABn83nWfb16t2Xyw-L65v3q8uL64WuKhkXKEmpaypAV63hxGCtMVmmQV3JUkONghA0FEuiieSGV42sjdRUigLAlPQse7nX3Tgf1NyToAgllFPGqUjEak8YD7dqM9oexq3yYNUvhx87BWN6mUNVMKoF5YaJhjDZtCCggLYqqWiYSbUkrbfzbVPTo9E4xBHckehxZLBr1fl7VZYVZ2JX7vksMPq7CUNUvQ0anYMB_RSUKBjjoiIJXO7BDlJhdmh90tNpG-yt9gO2NvkvyqJMP1lzmRJeHSUkJuKP2MEUglp9_vQf7Md_Z2--HbPnB-wawcV18G6K1g_hGGR7UI8-hBHbPy0khdpN9--fVLvpVvN0p7QXh-3_mzSPM_0JbqT3-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70445761</pqid></control><display><type>article</type><title>From classical genetics to quantitative genetics to systems biology: modeling epistasis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Aylor, David L ; Zeng, Zhao-Bang</creator><contributor>Allison, David B.</contributor><creatorcontrib>Aylor, David L ; Zeng, Zhao-Bang ; Allison, David B.</creatorcontrib><description>Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000029</identifier><identifier>PMID: 18369448</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Animals ; Biology ; Computational Biology/Systems Biology ; Cyclic AMP-Dependent Protein Kinases - genetics ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Dictyostelium - enzymology ; Dictyostelium - genetics ; Epistasis, Genetic ; Experiments ; Gene Expression ; Gene Expression Profiling ; Genetics and Genomics/Complex Traits ; Genetics and Genomics/Gene Expression ; Models, Genetic ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Quantitative genetics ; Regression Analysis ; Systems Biology</subject><ispartof>PLoS genetics, 2008-03, Vol.4 (3), p.e1000029-e1000029</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>Aylor and Zeng. 2008</rights><rights>2008 Aylor and Zeng. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Aylor DL, Zeng Z-B (2008) From Classical Genetics to Quantitative Genetics to Systems Biology: Modeling Epistasis. PLoS Genet 4(3): e1000029. doi:10.1371/journal.pgen.1000029</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</citedby><cites>FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265472/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265472/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18369448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Allison, David B.</contributor><creatorcontrib>Aylor, David L</creatorcontrib><creatorcontrib>Zeng, Zhao-Bang</creatorcontrib><title>From classical genetics to quantitative genetics to systems biology: modeling epistasis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biology</subject><subject>Computational Biology/Systems Biology</subject><subject>Cyclic AMP-Dependent Protein Kinases - genetics</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Dictyostelium - enzymology</subject><subject>Dictyostelium - genetics</subject><subject>Epistasis, Genetic</subject><subject>Experiments</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Genetics and Genomics/Complex Traits</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phenotype</subject><subject>Quantitative genetics</subject><subject>Regression Analysis</subject><subject>Systems Biology</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxDkVInDLnFsxw4HpKqisFJFJT6P1sSeZF058TZ2Kvbf42UD7N7APng088zr8Xiy7DkploQK8vrWT-MAbrnpcFiSIq2yfpCdEs7pQrCCPTywT7InIdwWBeWyFo-zEyJpVTMmT7PvV6Pvc-0gBKvB5UkMo9Uhjz6_m2CINkK093gUCNsQsQ95Y73z3fZN3nuDzg5djhsbIgQbnmaPWnABn83nWfb16t2Xyw-L65v3q8uL64WuKhkXKEmpaypAV63hxGCtMVmmQV3JUkONghA0FEuiieSGV42sjdRUigLAlPQse7nX3Tgf1NyToAgllFPGqUjEak8YD7dqM9oexq3yYNUvhx87BWN6mUNVMKoF5YaJhjDZtCCggLYqqWiYSbUkrbfzbVPTo9E4xBHckehxZLBr1fl7VZYVZ2JX7vksMPq7CUNUvQ0anYMB_RSUKBjjoiIJXO7BDlJhdmh90tNpG-yt9gO2NvkvyqJMP1lzmRJeHSUkJuKP2MEUglp9_vQf7Md_Z2--HbPnB-wawcV18G6K1g_hGGR7UI8-hBHbPy0khdpN9--fVLvpVvN0p7QXh-3_mzSPM_0JbqT3-g</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Aylor, David L</creator><creator>Zeng, Zhao-Bang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080301</creationdate><title>From classical genetics to quantitative genetics to systems biology: modeling epistasis</title><author>Aylor, David L ; Zeng, Zhao-Bang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biology</topic><topic>Computational Biology/Systems Biology</topic><topic>Cyclic AMP-Dependent Protein Kinases - genetics</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Dictyostelium - enzymology</topic><topic>Dictyostelium - genetics</topic><topic>Epistasis, Genetic</topic><topic>Experiments</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Genetics and Genomics/Complex Traits</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phenotype</topic><topic>Quantitative genetics</topic><topic>Regression Analysis</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aylor, David L</creatorcontrib><creatorcontrib>Zeng, Zhao-Bang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aylor, David L</au><au>Zeng, Zhao-Bang</au><au>Allison, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From classical genetics to quantitative genetics to systems biology: modeling epistasis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>4</volume><issue>3</issue><spage>e1000029</spage><epage>e1000029</epage><pages>e1000029-e1000029</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18369448</pmid><doi>10.1371/journal.pgen.1000029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2008-03, Vol.4 (3), p.e1000029-e1000029
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313534537
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Alleles
Animals
Biology
Computational Biology/Systems Biology
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Dictyostelium - enzymology
Dictyostelium - genetics
Epistasis, Genetic
Experiments
Gene Expression
Gene Expression Profiling
Genetics and Genomics/Complex Traits
Genetics and Genomics/Gene Expression
Models, Genetic
Mutation
Oligonucleotide Array Sequence Analysis
Phenotype
Quantitative genetics
Regression Analysis
Systems Biology
title From classical genetics to quantitative genetics to systems biology: modeling epistasis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20classical%20genetics%20to%20quantitative%20genetics%20to%20systems%20biology:%20modeling%20epistasis&rft.jtitle=PLoS%20genetics&rft.au=Aylor,%20David%20L&rft.date=2008-03-01&rft.volume=4&rft.issue=3&rft.spage=e1000029&rft.epage=e1000029&rft.pages=e1000029-e1000029&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000029&rft_dat=%3Cgale_plos_%3EA202369958%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c668t-e812c937ac6fd51de9ce6fddbec682ca9e711ed3e21c185d56b89d8c3870aad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70445761&rft_id=info:pmid/18369448&rft_galeid=A202369958&rfr_iscdi=true