Loading…

Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system

Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation an...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2010-03, Vol.6 (3), p.e1000875-e1000875
Main Authors: Tomljenovic-Berube, Ana M, Mulder, David T, Whiteside, Matthew D, Brinkman, Fiona S L, Coombes, Brian K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963
cites cdi_FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963
container_end_page e1000875
container_issue 3
container_start_page e1000875
container_title PLoS genetics
container_volume 6
creator Tomljenovic-Berube, Ana M
Mulder, David T
Whiteside, Matthew D
Brinkman, Fiona S L
Coombes, Brian K
description Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host.
doi_str_mv 10.1371/journal.pgen.1000875
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313541630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A223149912</galeid><doaj_id>oai_doaj_org_article_891e8d009ade4ef0a77eda766be0680c</doaj_id><sourcerecordid>A223149912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLguJFx2TSJO2NMC5-DCwuOOptyOSjkyFtapKq8-9Nt7PLFLxQAklInvdNck5Olj2FYAERhW_2bvAdt4u-Ud0CAgAqiu9l5xBjVNASlPdP5mfZoxD2ACBc1fRhdrYECABSovMsrKXqotFG8Ghclzudx53KvWoGy6Pzh9y6xohcuC56Z63pmnzDbes6ZS3Pex53jkvex0m-PdzIN8GvitS9y-MvVwjX9onvYh4OIar2cfZAcxvUk-N4kX378P7r5afi6vrj-nJ1VQhS01jUEnNEtwhQDbaUwpIKATGiUsFa1kgTWGKNNcUlKQGRACFKNdUCI7iUpCboIns--fbWBXaMV2AQQYRLSBBIxHoipON71nvTcn9gjht2s-B8w7iPRljFqhqqSgJQc6lKpQGnVElOCdkqQCogktfb42nDtlVSpPd6bmem853O7FjjfrJlhSiqqmTw6mjg3Y9BhchaE8QY5k65ITCaHlhV9XKZyBcT2fB0M9NplwzFSLNV2oZlXcORWvyFSk2q1qR8Km3S-kzweiYYc65-x4YPIbD15st_sJ__nb3-PmdfnrA7xW3cBWeH8XeFOVhOoPAuBK_0XaQhYGOB3CacjQXCjgWSZM9Os3Qnuq0I9Ae6sQvT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733788922</pqid></control><display><type>article</type><title>Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Tomljenovic-Berube, Ana M ; Mulder, David T ; Whiteside, Matthew D ; Brinkman, Fiona S L ; Coombes, Brian K</creator><contributor>Casadesús, Josep</contributor><creatorcontrib>Tomljenovic-Berube, Ana M ; Mulder, David T ; Whiteside, Matthew D ; Brinkman, Fiona S L ; Coombes, Brian K ; Casadesús, Josep</creatorcontrib><description>Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000875</identifier><identifier>PMID: 20300643</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Physiological - genetics ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Base Sequence ; Chromatin Immunoprecipitation ; Conserved Sequence ; DNA sequencing ; DNA, Bacterial - metabolism ; Evolution, Molecular ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Genetic aspects ; Genetic Loci - genetics ; Genetic regulation ; Genetics and Genomics/Gene Discovery ; Genetics and Genomics/Gene Expression ; Genetics and Genomics/Microbial Evolution and Genomics ; Genome, Bacterial - genetics ; Genomic Islands - genetics ; Genomics ; Infectious Diseases ; Inverted Repeat Sequences - genetics ; Medical research ; Methods ; Molecular Sequence Data ; Mutation ; Mutation - genetics ; Noncoding DNA ; Nucleotide sequencing ; Oligonucleotide Array Sequence Analysis ; Operon - genetics ; Promoter Regions, Genetic - genetics ; Properties ; Protein Binding ; Proteins ; Regulon - genetics ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; Salmonella ; Salmonella - genetics ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>PLoS genetics, 2010-03, Vol.6 (3), p.e1000875-e1000875</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Tomljenovic-Berube et al. 2010</rights><rights>2010 Tomljenovic-Berube et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Tomljenovic-Berube AM, Mulder DT, Whiteside MD, Brinkman FSL, Coombes BK (2010) Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System. PLoS Genet 6(3): e1000875. doi:10.1371/journal.pgen.1000875</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963</citedby><cites>FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,36994,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20300643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Casadesús, Josep</contributor><creatorcontrib>Tomljenovic-Berube, Ana M</creatorcontrib><creatorcontrib>Mulder, David T</creatorcontrib><creatorcontrib>Whiteside, Matthew D</creatorcontrib><creatorcontrib>Brinkman, Fiona S L</creatorcontrib><creatorcontrib>Coombes, Brian K</creatorcontrib><title>Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host.</description><subject>Adaptation, Physiological - genetics</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Chromatin Immunoprecipitation</subject><subject>Conserved Sequence</subject><subject>DNA sequencing</subject><subject>DNA, Bacterial - metabolism</subject><subject>Evolution, Molecular</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetic aspects</subject><subject>Genetic Loci - genetics</subject><subject>Genetic regulation</subject><subject>Genetics and Genomics/Gene Discovery</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Genetics and Genomics/Microbial Evolution and Genomics</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomic Islands - genetics</subject><subject>Genomics</subject><subject>Infectious Diseases</subject><subject>Inverted Repeat Sequences - genetics</subject><subject>Medical research</subject><subject>Methods</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Noncoding DNA</subject><subject>Nucleotide sequencing</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Operon - genetics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Regulon - genetics</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>Salmonella</subject><subject>Salmonella - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLguJFx2TSJO2NMC5-DCwuOOptyOSjkyFtapKq8-9Nt7PLFLxQAklInvdNck5Olj2FYAERhW_2bvAdt4u-Ud0CAgAqiu9l5xBjVNASlPdP5mfZoxD2ACBc1fRhdrYECABSovMsrKXqotFG8Ghclzudx53KvWoGy6Pzh9y6xohcuC56Z63pmnzDbes6ZS3Pex53jkvex0m-PdzIN8GvitS9y-MvVwjX9onvYh4OIar2cfZAcxvUk-N4kX378P7r5afi6vrj-nJ1VQhS01jUEnNEtwhQDbaUwpIKATGiUsFa1kgTWGKNNcUlKQGRACFKNdUCI7iUpCboIns--fbWBXaMV2AQQYRLSBBIxHoipON71nvTcn9gjht2s-B8w7iPRljFqhqqSgJQc6lKpQGnVElOCdkqQCogktfb42nDtlVSpPd6bmem853O7FjjfrJlhSiqqmTw6mjg3Y9BhchaE8QY5k65ITCaHlhV9XKZyBcT2fB0M9NplwzFSLNV2oZlXcORWvyFSk2q1qR8Km3S-kzweiYYc65-x4YPIbD15st_sJ__nb3-PmdfnrA7xW3cBWeH8XeFOVhOoPAuBK_0XaQhYGOB3CacjQXCjgWSZM9Os3Qnuq0I9Ae6sQvT</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Tomljenovic-Berube, Ana M</creator><creator>Mulder, David T</creator><creator>Whiteside, Matthew D</creator><creator>Brinkman, Fiona S L</creator><creator>Coombes, Brian K</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100301</creationdate><title>Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system</title><author>Tomljenovic-Berube, Ana M ; Mulder, David T ; Whiteside, Matthew D ; Brinkman, Fiona S L ; Coombes, Brian K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Chromatin Immunoprecipitation</topic><topic>Conserved Sequence</topic><topic>DNA sequencing</topic><topic>DNA, Bacterial - metabolism</topic><topic>Evolution, Molecular</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetic aspects</topic><topic>Genetic Loci - genetics</topic><topic>Genetic regulation</topic><topic>Genetics and Genomics/Gene Discovery</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Genetics and Genomics/Microbial Evolution and Genomics</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomic Islands - genetics</topic><topic>Genomics</topic><topic>Infectious Diseases</topic><topic>Inverted Repeat Sequences - genetics</topic><topic>Medical research</topic><topic>Methods</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Noncoding DNA</topic><topic>Nucleotide sequencing</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Operon - genetics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Regulon - genetics</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>Salmonella</topic><topic>Salmonella - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomljenovic-Berube, Ana M</creatorcontrib><creatorcontrib>Mulder, David T</creatorcontrib><creatorcontrib>Whiteside, Matthew D</creatorcontrib><creatorcontrib>Brinkman, Fiona S L</creatorcontrib><creatorcontrib>Coombes, Brian K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomljenovic-Berube, Ana M</au><au>Mulder, David T</au><au>Whiteside, Matthew D</au><au>Brinkman, Fiona S L</au><au>Coombes, Brian K</au><au>Casadesús, Josep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>6</volume><issue>3</issue><spage>e1000875</spage><epage>e1000875</epage><pages>e1000875-e1000875</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20300643</pmid><doi>10.1371/journal.pgen.1000875</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2010-03, Vol.6 (3), p.e1000875-e1000875
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313541630
source Publicly Available Content Database; PubMed Central
subjects Adaptation, Physiological - genetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Base Sequence
Chromatin Immunoprecipitation
Conserved Sequence
DNA sequencing
DNA, Bacterial - metabolism
Evolution, Molecular
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Genetic aspects
Genetic Loci - genetics
Genetic regulation
Genetics and Genomics/Gene Discovery
Genetics and Genomics/Gene Expression
Genetics and Genomics/Microbial Evolution and Genomics
Genome, Bacterial - genetics
Genomic Islands - genetics
Genomics
Infectious Diseases
Inverted Repeat Sequences - genetics
Medical research
Methods
Molecular Sequence Data
Mutation
Mutation - genetics
Noncoding DNA
Nucleotide sequencing
Oligonucleotide Array Sequence Analysis
Operon - genetics
Promoter Regions, Genetic - genetics
Properties
Protein Binding
Proteins
Regulon - genetics
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
Salmonella
Salmonella - genetics
Transcription Factors - genetics
Transcription Factors - metabolism
title Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20regulatory%20logic%20controlling%20Salmonella%20pathoadaptation%20by%20the%20SsrA-SsrB%20two-component%20system&rft.jtitle=PLoS%20genetics&rft.au=Tomljenovic-Berube,%20Ana%20M&rft.date=2010-03-01&rft.volume=6&rft.issue=3&rft.spage=e1000875&rft.epage=e1000875&rft.pages=e1000875-e1000875&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000875&rft_dat=%3Cgale_plos_%3EA223149912%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c697t-9d5a37b307f0b77147cc1537de19d93f6145f5f7546406d03377f7fc5312d6963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733788922&rft_id=info:pmid/20300643&rft_galeid=A223149912&rfr_iscdi=true