Loading…

Ancient mtDNA genetic variants modulate mtDNA transcription and replication

Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and whic...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2009-05, Vol.5 (5), p.e1000474-e1000474
Main Authors: Suissa, Sarit, Wang, Zhibo, Poole, Jason, Wittkopp, Sharine, Feder, Jeanette, Shutt, Timothy E, Wallace, Douglas C, Shadel, Gerald S, Mishmar, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3
cites cdi_FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3
container_end_page e1000474
container_issue 5
container_start_page e1000474
container_title PLoS genetics
container_volume 5
creator Suissa, Sarit
Wang, Zhibo
Poole, Jason
Wittkopp, Sharine
Feder, Jeanette
Shutt, Timothy E
Wallace, Douglas C
Shadel, Gerald S
Mishmar, Dan
description Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.
doi_str_mv 10.1371/journal.pgen.1000474
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313544153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A201609875</galeid><doaj_id>oai_doaj_org_article_1a91ccc462a54c74b4362e6148a5d28e</doaj_id><sourcerecordid>A201609875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3</originalsourceid><addsrcrecordid>eNqFUsuO1DAQjBCIfcAfIMiJ2wx-O74gjRYWVqzgAmer43hmPHLsYDsr8fd4mMDunjj50dXlrnI1zSuM1phK_O4Q5xTAr6edDWuMEGKSPWnOMed0JRliTx_sz5qLnA8IUd4p-bw5w4oRxkh33nzZBONsKO1YPnzdtJXLFmfaO0gOQsntGIfZQ7FLvSQI2SQ3FRdDC2Fok528M3A8v2iebcFn-3JZL5sf1x-_X31e3X77dHO1uV0ZQVhZKUI5SEVEh-RWSMI6UKpTSgirMJYUqOkJQ9yQLZY950BQT5CVZhis4ENPL5s3J97Jx6wXH7LGFFPOGOa0Im5OiCHCQU_JjZB-6QhO_7mIaachVZ3eagwKG2OYIMCZkaxnVBArcJ2KD6Szlev98trcj3Yw1awE_hHp40pwe72Ld5oISREVleDtQpDiz9nmokeXjfUego1z1tUColAV_j8gQYLJ6tc9cAdVwd6CL_sc_Xz8hKw3BGGBVCd5BbIT0KSYc7Lbf2NjpI8p-uuePqZILymqba8fSr5vWmJDfwMK6sRa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20647724</pqid></control><display><type>article</type><title>Ancient mtDNA genetic variants modulate mtDNA transcription and replication</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Suissa, Sarit ; Wang, Zhibo ; Poole, Jason ; Wittkopp, Sharine ; Feder, Jeanette ; Shutt, Timothy E ; Wallace, Douglas C ; Shadel, Gerald S ; Mishmar, Dan</creator><creatorcontrib>Suissa, Sarit ; Wang, Zhibo ; Poole, Jason ; Wittkopp, Sharine ; Feder, Jeanette ; Shutt, Timothy E ; Wallace, Douglas C ; Shadel, Gerald S ; Mishmar, Dan</creatorcontrib><description>Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened &gt;2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a &gt;2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000474</identifier><identifier>PMID: 19424428</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Binding sites ; Binding Sites - genetics ; Cell culture ; Deoxyribonucleic acid ; DNA ; DNA Replication - genetics ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; DNA-Binding Proteins - metabolism ; Evolution ; Evolution, Molecular ; Evolutionary Biology/Human Evolution ; Experiments ; Gene Dosage ; Gene mutations ; Genetic transcription ; Genetic Variation ; Genetics ; Genetics and Genomics ; Genetics and Genomics/Functional Genomics ; Genome, Human ; Genome, Mitochondrial ; Genomes ; Genomics ; Haplotypes ; Health aspects ; Humans ; Mitochondria ; Mitochondrial DNA ; Mitochondrial Proteins - metabolism ; Mutation ; Phenotype ; Physiological aspects ; Point Mutation ; Real time ; Regulatory Sequences, Nucleic Acid ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>PLoS genetics, 2009-05, Vol.5 (5), p.e1000474-e1000474</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Suissa et al. 2009</rights><rights>2009 Suissa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Suissa S, Wang Z, Poole J, Wittkopp S, Feder J, et al. (2009) Ancient mtDNA Genetic Variants Modulate mtDNA Transcription and Replication. PLoS Genet 5(5): e1000474. doi:10.1371/journal.pgen.1000474</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3</citedby><cites>FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673036/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673036/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27900,27901,36989,53765,53767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19424428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suissa, Sarit</creatorcontrib><creatorcontrib>Wang, Zhibo</creatorcontrib><creatorcontrib>Poole, Jason</creatorcontrib><creatorcontrib>Wittkopp, Sharine</creatorcontrib><creatorcontrib>Feder, Jeanette</creatorcontrib><creatorcontrib>Shutt, Timothy E</creatorcontrib><creatorcontrib>Wallace, Douglas C</creatorcontrib><creatorcontrib>Shadel, Gerald S</creatorcontrib><creatorcontrib>Mishmar, Dan</creatorcontrib><title>Ancient mtDNA genetic variants modulate mtDNA transcription and replication</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened &gt;2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a &gt;2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.</description><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Cell culture</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Replication - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology/Human Evolution</subject><subject>Experiments</subject><subject>Gene Dosage</subject><subject>Gene mutations</subject><subject>Genetic transcription</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genetics and Genomics</subject><subject>Genetics and Genomics/Functional Genomics</subject><subject>Genome, Human</subject><subject>Genome, Mitochondrial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Point Mutation</subject><subject>Real time</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFUsuO1DAQjBCIfcAfIMiJ2wx-O74gjRYWVqzgAmer43hmPHLsYDsr8fd4mMDunjj50dXlrnI1zSuM1phK_O4Q5xTAr6edDWuMEGKSPWnOMed0JRliTx_sz5qLnA8IUd4p-bw5w4oRxkh33nzZBONsKO1YPnzdtJXLFmfaO0gOQsntGIfZQ7FLvSQI2SQ3FRdDC2Fok528M3A8v2iebcFn-3JZL5sf1x-_X31e3X77dHO1uV0ZQVhZKUI5SEVEh-RWSMI6UKpTSgirMJYUqOkJQ9yQLZY950BQT5CVZhis4ENPL5s3J97Jx6wXH7LGFFPOGOa0Im5OiCHCQU_JjZB-6QhO_7mIaachVZ3eagwKG2OYIMCZkaxnVBArcJ2KD6Szlev98trcj3Yw1awE_hHp40pwe72Ld5oISREVleDtQpDiz9nmokeXjfUego1z1tUColAV_j8gQYLJ6tc9cAdVwd6CL_sc_Xz8hKw3BGGBVCd5BbIT0KSYc7Lbf2NjpI8p-uuePqZILymqba8fSr5vWmJDfwMK6sRa</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Suissa, Sarit</creator><creator>Wang, Zhibo</creator><creator>Poole, Jason</creator><creator>Wittkopp, Sharine</creator><creator>Feder, Jeanette</creator><creator>Shutt, Timothy E</creator><creator>Wallace, Douglas C</creator><creator>Shadel, Gerald S</creator><creator>Mishmar, Dan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090501</creationdate><title>Ancient mtDNA genetic variants modulate mtDNA transcription and replication</title><author>Suissa, Sarit ; Wang, Zhibo ; Poole, Jason ; Wittkopp, Sharine ; Feder, Jeanette ; Shutt, Timothy E ; Wallace, Douglas C ; Shadel, Gerald S ; Mishmar, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Cell culture</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Replication - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology/Human Evolution</topic><topic>Experiments</topic><topic>Gene Dosage</topic><topic>Gene mutations</topic><topic>Genetic transcription</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genetics and Genomics</topic><topic>Genetics and Genomics/Functional Genomics</topic><topic>Genome, Human</topic><topic>Genome, Mitochondrial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Point Mutation</topic><topic>Real time</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suissa, Sarit</creatorcontrib><creatorcontrib>Wang, Zhibo</creatorcontrib><creatorcontrib>Poole, Jason</creatorcontrib><creatorcontrib>Wittkopp, Sharine</creatorcontrib><creatorcontrib>Feder, Jeanette</creatorcontrib><creatorcontrib>Shutt, Timothy E</creatorcontrib><creatorcontrib>Wallace, Douglas C</creatorcontrib><creatorcontrib>Shadel, Gerald S</creatorcontrib><creatorcontrib>Mishmar, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suissa, Sarit</au><au>Wang, Zhibo</au><au>Poole, Jason</au><au>Wittkopp, Sharine</au><au>Feder, Jeanette</au><au>Shutt, Timothy E</au><au>Wallace, Douglas C</au><au>Shadel, Gerald S</au><au>Mishmar, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancient mtDNA genetic variants modulate mtDNA transcription and replication</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>5</volume><issue>5</issue><spage>e1000474</spage><epage>e1000474</epage><pages>e1000474-e1000474</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened &gt;2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a &gt;2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19424428</pmid><doi>10.1371/journal.pgen.1000474</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2009-05, Vol.5 (5), p.e1000474-e1000474
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313544153
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Binding sites
Binding Sites - genetics
Cell culture
Deoxyribonucleic acid
DNA
DNA Replication - genetics
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
DNA-Binding Proteins - metabolism
Evolution
Evolution, Molecular
Evolutionary Biology/Human Evolution
Experiments
Gene Dosage
Gene mutations
Genetic transcription
Genetic Variation
Genetics
Genetics and Genomics
Genetics and Genomics/Functional Genomics
Genome, Human
Genome, Mitochondrial
Genomes
Genomics
Haplotypes
Health aspects
Humans
Mitochondria
Mitochondrial DNA
Mitochondrial Proteins - metabolism
Mutation
Phenotype
Physiological aspects
Point Mutation
Real time
Regulatory Sequences, Nucleic Acid
Transcription Factors - metabolism
Transcription, Genetic
title Ancient mtDNA genetic variants modulate mtDNA transcription and replication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancient%20mtDNA%20genetic%20variants%20modulate%20mtDNA%20transcription%20and%20replication&rft.jtitle=PLoS%20genetics&rft.au=Suissa,%20Sarit&rft.date=2009-05-01&rft.volume=5&rft.issue=5&rft.spage=e1000474&rft.epage=e1000474&rft.pages=e1000474-e1000474&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000474&rft_dat=%3Cgale_plos_%3EA201609875%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624t-9235a7926807f67248a9989966e91173a3cb2405c2f17b55a20b20e7cdde65db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20647724&rft_id=info:pmid/19424428&rft_galeid=A201609875&rfr_iscdi=true