Loading…

Gene-based tests of association

Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2011-07, Vol.7 (7), p.e1002177-e1002177
Main Authors: Huang, Hailiang, Chanda, Pritam, Alonso, Alvaro, Bader, Joel S, Arking, Dan E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3
cites cdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3
container_end_page e1002177
container_issue 7
container_start_page e1002177
container_title PLoS genetics
container_volume 7
creator Huang, Hailiang
Chanda, Pritam
Alonso, Alvaro
Bader, Joel S
Arking, Dan E
description Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.
doi_str_mv 10.1371/journal.pgen.1002177
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313545997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A263786263</galeid><doaj_id>oai_doaj_org_article_54690885618f4c6b97de466b5a371a4b</doaj_id><sourcerecordid>A263786263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D8QdEBQvOuZMvpobYVl0HVhc8Os2pOlJJ0OnmW1a0X9v6nSXKXihBJJw8pw35yRvlj0HsgQq4e02DF1rmuW-xnYJhKxAygfZKXBOc8kIe3i0P8mexLglhPJCycfZyQqKlUoip9n5FbaYlyZitegx9nER3MLEGKw3vQ_t0-yRM03EZ9N6ln378P7r5cf8-uZqfXlxnVspZJ9zrARwCkpWpXAgRAlUGeVoSTgHglYpBxK5Y6IkIIvSoFOuklAxiqAsPcvOD7r7JkQ99RY1UKCccaVkItYHogpmq_ed35nulw7G6z-B0NXadL23DWrOhCJFwQUUjllRpqqQpZq4ST0bViatd9NtQ7nDymLbd6aZic5PWr_RdfihKbCkSpPA60mgC7dDeje989Fi05gWwxB1UVBCBJFj2S8PZG1SZb51IQnakdYXK0FlIdKcqOVfqDQq3HkbWnQ-xWcJb2YJienxZ1-bIUa9_vL5P9hP_87efJ-zr47YDZqm38TQDKNv4hxkB9B2IcYO3f1LA9Gjme8-XI9m1pOZU9qL41-6T7pzL_0NUMXr1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883006077</pqid></control><display><type>article</type><title>Gene-based tests of association</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Huang, Hailiang ; Chanda, Pritam ; Alonso, Alvaro ; Bader, Joel S ; Arking, Dan E</creator><contributor>McCarthy, Mark I.</contributor><creatorcontrib>Huang, Hailiang ; Chanda, Pritam ; Alonso, Alvaro ; Bader, Joel S ; Arking, Dan E ; McCarthy, Mark I.</creatorcontrib><description>Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002177</identifier><identifier>PMID: 21829371</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Atherosclerosis ; Biology ; Computer Science ; Computer Simulation ; Electrocardiogram ; Electrocardiography ; Genes ; Genetic Predisposition to Disease ; Genetic screening ; Genetics ; Genome-Wide Association Study ; Genomes ; Genotype ; Humans ; Mathematics ; Methods ; Models, Genetic ; Parameter estimation ; Phenotype ; Polymorphism, Single Nucleotide ; Principal components analysis ; Single nucleotide polymorphisms ; Studies</subject><ispartof>PLoS genetics, 2011-07, Vol.7 (7), p.e1002177-e1002177</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Bader et al. 2011</rights><rights>2011 Bader et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Huang H, Chanda P, Alonso A, Bader JS, Arking DE (2011) Gene-Based Tests of Association. PLoS Genet 7(7): e1002177. doi:10.1371/journal.pgen.1002177</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</citedby><cites>FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145613/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145613/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21829371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McCarthy, Mark I.</contributor><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Chanda, Pritam</creatorcontrib><creatorcontrib>Alonso, Alvaro</creatorcontrib><creatorcontrib>Bader, Joel S</creatorcontrib><creatorcontrib>Arking, Dan E</creatorcontrib><title>Gene-based tests of association</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.</description><subject>Atherosclerosis</subject><subject>Biology</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic screening</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Principal components analysis</subject><subject>Single nucleotide polymorphisms</subject><subject>Studies</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D8QdEBQvOuZMvpobYVl0HVhc8Os2pOlJJ0OnmW1a0X9v6nSXKXihBJJw8pw35yRvlj0HsgQq4e02DF1rmuW-xnYJhKxAygfZKXBOc8kIe3i0P8mexLglhPJCycfZyQqKlUoip9n5FbaYlyZitegx9nER3MLEGKw3vQ_t0-yRM03EZ9N6ln378P7r5cf8-uZqfXlxnVspZJ9zrARwCkpWpXAgRAlUGeVoSTgHglYpBxK5Y6IkIIvSoFOuklAxiqAsPcvOD7r7JkQ99RY1UKCccaVkItYHogpmq_ed35nulw7G6z-B0NXadL23DWrOhCJFwQUUjllRpqqQpZq4ST0bViatd9NtQ7nDymLbd6aZic5PWr_RdfihKbCkSpPA60mgC7dDeje989Fi05gWwxB1UVBCBJFj2S8PZG1SZb51IQnakdYXK0FlIdKcqOVfqDQq3HkbWnQ-xWcJb2YJienxZ1-bIUa9_vL5P9hP_87efJ-zr47YDZqm38TQDKNv4hxkB9B2IcYO3f1LA9Gjme8-XI9m1pOZU9qL41-6T7pzL_0NUMXr1Q</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Huang, Hailiang</creator><creator>Chanda, Pritam</creator><creator>Alonso, Alvaro</creator><creator>Bader, Joel S</creator><creator>Arking, Dan E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110701</creationdate><title>Gene-based tests of association</title><author>Huang, Hailiang ; Chanda, Pritam ; Alonso, Alvaro ; Bader, Joel S ; Arking, Dan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atherosclerosis</topic><topic>Biology</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic screening</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Principal components analysis</topic><topic>Single nucleotide polymorphisms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Chanda, Pritam</creatorcontrib><creatorcontrib>Alonso, Alvaro</creatorcontrib><creatorcontrib>Bader, Joel S</creatorcontrib><creatorcontrib>Arking, Dan E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hailiang</au><au>Chanda, Pritam</au><au>Alonso, Alvaro</au><au>Bader, Joel S</au><au>Arking, Dan E</au><au>McCarthy, Mark I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-based tests of association</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>7</volume><issue>7</issue><spage>e1002177</spage><epage>e1002177</epage><pages>e1002177-e1002177</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21829371</pmid><doi>10.1371/journal.pgen.1002177</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2011-07, Vol.7 (7), p.e1002177-e1002177
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1313545997
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Atherosclerosis
Biology
Computer Science
Computer Simulation
Electrocardiogram
Electrocardiography
Genes
Genetic Predisposition to Disease
Genetic screening
Genetics
Genome-Wide Association Study
Genomes
Genotype
Humans
Mathematics
Methods
Models, Genetic
Parameter estimation
Phenotype
Polymorphism, Single Nucleotide
Principal components analysis
Single nucleotide polymorphisms
Studies
title Gene-based tests of association
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-based%20tests%20of%20association&rft.jtitle=PLoS%20genetics&rft.au=Huang,%20Hailiang&rft.date=2011-07-01&rft.volume=7&rft.issue=7&rft.spage=e1002177&rft.epage=e1002177&rft.pages=e1002177-e1002177&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002177&rft_dat=%3Cgale_plos_%3EA263786263%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883006077&rft_id=info:pmid/21829371&rft_galeid=A263786263&rfr_iscdi=true