Loading…
Gene-based tests of association
Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian...
Saved in:
Published in: | PLoS genetics 2011-07, Vol.7 (7), p.e1002177-e1002177 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3 |
container_end_page | e1002177 |
container_issue | 7 |
container_start_page | e1002177 |
container_title | PLoS genetics |
container_volume | 7 |
creator | Huang, Hailiang Chanda, Pritam Alonso, Alvaro Bader, Joel S Arking, Dan E |
description | Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis. |
doi_str_mv | 10.1371/journal.pgen.1002177 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313545997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A263786263</galeid><doaj_id>oai_doaj_org_article_54690885618f4c6b97de466b5a371a4b</doaj_id><sourcerecordid>A263786263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhoso7rr6D8QdEBQvOuZMvpobYVl0HVhc8Os2pOlJJ0OnmW1a0X9v6nSXKXihBJJw8pw35yRvlj0HsgQq4e02DF1rmuW-xnYJhKxAygfZKXBOc8kIe3i0P8mexLglhPJCycfZyQqKlUoip9n5FbaYlyZitegx9nER3MLEGKw3vQ_t0-yRM03EZ9N6ln378P7r5cf8-uZqfXlxnVspZJ9zrARwCkpWpXAgRAlUGeVoSTgHglYpBxK5Y6IkIIvSoFOuklAxiqAsPcvOD7r7JkQ99RY1UKCccaVkItYHogpmq_ed35nulw7G6z-B0NXadL23DWrOhCJFwQUUjllRpqqQpZq4ST0bViatd9NtQ7nDymLbd6aZic5PWr_RdfihKbCkSpPA60mgC7dDeje989Fi05gWwxB1UVBCBJFj2S8PZG1SZb51IQnakdYXK0FlIdKcqOVfqDQq3HkbWnQ-xWcJb2YJienxZ1-bIUa9_vL5P9hP_87efJ-zr47YDZqm38TQDKNv4hxkB9B2IcYO3f1LA9Gjme8-XI9m1pOZU9qL41-6T7pzL_0NUMXr1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883006077</pqid></control><display><type>article</type><title>Gene-based tests of association</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Huang, Hailiang ; Chanda, Pritam ; Alonso, Alvaro ; Bader, Joel S ; Arking, Dan E</creator><contributor>McCarthy, Mark I.</contributor><creatorcontrib>Huang, Hailiang ; Chanda, Pritam ; Alonso, Alvaro ; Bader, Joel S ; Arking, Dan E ; McCarthy, Mark I.</creatorcontrib><description>Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1002177</identifier><identifier>PMID: 21829371</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Atherosclerosis ; Biology ; Computer Science ; Computer Simulation ; Electrocardiogram ; Electrocardiography ; Genes ; Genetic Predisposition to Disease ; Genetic screening ; Genetics ; Genome-Wide Association Study ; Genomes ; Genotype ; Humans ; Mathematics ; Methods ; Models, Genetic ; Parameter estimation ; Phenotype ; Polymorphism, Single Nucleotide ; Principal components analysis ; Single nucleotide polymorphisms ; Studies</subject><ispartof>PLoS genetics, 2011-07, Vol.7 (7), p.e1002177-e1002177</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Bader et al. 2011</rights><rights>2011 Bader et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Huang H, Chanda P, Alonso A, Bader JS, Arking DE (2011) Gene-Based Tests of Association. PLoS Genet 7(7): e1002177. doi:10.1371/journal.pgen.1002177</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</citedby><cites>FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145613/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145613/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21829371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>McCarthy, Mark I.</contributor><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Chanda, Pritam</creatorcontrib><creatorcontrib>Alonso, Alvaro</creatorcontrib><creatorcontrib>Bader, Joel S</creatorcontrib><creatorcontrib>Arking, Dan E</creatorcontrib><title>Gene-based tests of association</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.</description><subject>Atherosclerosis</subject><subject>Biology</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Electrocardiogram</subject><subject>Electrocardiography</subject><subject>Genes</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic screening</subject><subject>Genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Principal components analysis</subject><subject>Single nucleotide polymorphisms</subject><subject>Studies</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhoso7rr6D8QdEBQvOuZMvpobYVl0HVhc8Os2pOlJJ0OnmW1a0X9v6nSXKXihBJJw8pw35yRvlj0HsgQq4e02DF1rmuW-xnYJhKxAygfZKXBOc8kIe3i0P8mexLglhPJCycfZyQqKlUoip9n5FbaYlyZitegx9nER3MLEGKw3vQ_t0-yRM03EZ9N6ln378P7r5cf8-uZqfXlxnVspZJ9zrARwCkpWpXAgRAlUGeVoSTgHglYpBxK5Y6IkIIvSoFOuklAxiqAsPcvOD7r7JkQ99RY1UKCccaVkItYHogpmq_ed35nulw7G6z-B0NXadL23DWrOhCJFwQUUjllRpqqQpZq4ST0bViatd9NtQ7nDymLbd6aZic5PWr_RdfihKbCkSpPA60mgC7dDeje989Fi05gWwxB1UVBCBJFj2S8PZG1SZb51IQnakdYXK0FlIdKcqOVfqDQq3HkbWnQ-xWcJb2YJienxZ1-bIUa9_vL5P9hP_87efJ-zr47YDZqm38TQDKNv4hxkB9B2IcYO3f1LA9Gjme8-XI9m1pOZU9qL41-6T7pzL_0NUMXr1Q</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Huang, Hailiang</creator><creator>Chanda, Pritam</creator><creator>Alonso, Alvaro</creator><creator>Bader, Joel S</creator><creator>Arking, Dan E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110701</creationdate><title>Gene-based tests of association</title><author>Huang, Hailiang ; Chanda, Pritam ; Alonso, Alvaro ; Bader, Joel S ; Arking, Dan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atherosclerosis</topic><topic>Biology</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Electrocardiogram</topic><topic>Electrocardiography</topic><topic>Genes</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic screening</topic><topic>Genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Principal components analysis</topic><topic>Single nucleotide polymorphisms</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Chanda, Pritam</creatorcontrib><creatorcontrib>Alonso, Alvaro</creatorcontrib><creatorcontrib>Bader, Joel S</creatorcontrib><creatorcontrib>Arking, Dan E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hailiang</au><au>Chanda, Pritam</au><au>Alonso, Alvaro</au><au>Bader, Joel S</au><au>Arking, Dan E</au><au>McCarthy, Mark I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-based tests of association</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>7</volume><issue>7</issue><spage>e1002177</spage><epage>e1002177</epage><pages>e1002177-e1002177</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Genome-wide association studies (GWAS) are now used routinely to identify SNPs associated with complex human phenotypes. In several cases, multiple variants within a gene contribute independently to disease risk. Here we introduce a novel Gene-Wide Significance (GWiS) test that uses greedy Bayesian model selection to identify the independent effects within a gene, which are combined to generate a stronger statistical signal. Permutation tests provide p-values that correct for the number of independent tests genome-wide and within each genetic locus. When applied to a dataset comprising 2.5 million SNPs in up to 8,000 individuals measured for various electrocardiography (ECG) parameters, this method identifies more validated associations than conventional GWAS approaches. The method also provides, for the first time, systematic assessments of the number of independent effects within a gene and the fraction of disease-associated genes housing multiple independent effects, observed at 35%-50% of loci in our study. This method can be generalized to other study designs, retains power for low-frequency alleles, and provides gene-based p-values that are directly compatible for pathway-based meta-analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21829371</pmid><doi>10.1371/journal.pgen.1002177</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2011-07, Vol.7 (7), p.e1002177-e1002177 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313545997 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Atherosclerosis Biology Computer Science Computer Simulation Electrocardiogram Electrocardiography Genes Genetic Predisposition to Disease Genetic screening Genetics Genome-Wide Association Study Genomes Genotype Humans Mathematics Methods Models, Genetic Parameter estimation Phenotype Polymorphism, Single Nucleotide Principal components analysis Single nucleotide polymorphisms Studies |
title | Gene-based tests of association |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-based%20tests%20of%20association&rft.jtitle=PLoS%20genetics&rft.au=Huang,%20Hailiang&rft.date=2011-07-01&rft.volume=7&rft.issue=7&rft.spage=e1002177&rft.epage=e1002177&rft.pages=e1002177-e1002177&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1002177&rft_dat=%3Cgale_plos_%3EA263786263%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c767t-5ed6153197db6f166b139a9f3b05510ec99f17e5f46b0178baef9fd71d43e19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883006077&rft_id=info:pmid/21829371&rft_galeid=A263786263&rfr_iscdi=true |