Loading…
A flexible and accurate genotype imputation method for the next generation of genome-wide association studies
Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000...
Saved in:
Published in: | PLoS genetics 2009-06, Vol.5 (6), p.e1000529-e1000529 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3 |
container_end_page | e1000529 |
container_issue | 6 |
container_start_page | e1000529 |
container_title | PLoS genetics |
container_volume | 5 |
creator | Howie, Bryan N Donnelly, Peter Marchini, Jonathan |
description | Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%-20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions. |
doi_str_mv | 10.1371/journal.pgen.1000529 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1313549676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A203232070</galeid><doaj_id>oai_doaj_org_article_4d266fbe78fe41ba843a7640b8f9fa61</doaj_id><sourcerecordid>A203232070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLwoIXMyZN26Q3wrD4MbC44NdtSJOTmSxpMyap7v57023VKXih5CLhnOd9E87JybKnGK0xofjVtRt8L-z6sIN-jRFCVdHcy05xVZEVLVF5_-h8kj0K4RohUrGGPsxOcFOVhFBymnWbXFu4Ma2FXPQqF1IOXkTIk6uLtwfITXcYoojG9XkHce9Urp3P4x7yHm7iyIGf0k7fqTpY_TAq2YXgpJlSIQ7KQHicPdDCBngy72fZl7dvPl-8X11evdtebC5XkmESV63GGGEQihSEKVyVWlQpQRUtWt3KuhIUCKayacsmnRtJCSNFVTY4xRsmyVn2fPI9WBf4XKnAMcEkUTWtE7GdCOXENT940wl_y50w_C7g_I4LH420wEtV1LVugTINJW4FK4mgdYlaphstapy8Xs-3DW0HSkIfvbAL02WmN3u-c995UbOmIeNjzmcD774NECLvTJBgrejBDYHXqYcMFyyBLyZwJ9LDTK9d8pMjzDcFStUqEEWJWv-FSktBZ6TrQZsUXwheLgSJiam3OzGEwLefPv4H--Hf2auvS_b8iN2DsHEfnB3G7xOWYDmB0rsQPOjfhcaIj5Pxq998nAw-T0aSPTtu0h_RPArkJzleCSE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67408128</pqid></control><display><type>article</type><title>A flexible and accurate genotype imputation method for the next generation of genome-wide association studies</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Howie, Bryan N ; Donnelly, Peter ; Marchini, Jonathan</creator><contributor>Schork, Nicholas J.</contributor><creatorcontrib>Howie, Bryan N ; Donnelly, Peter ; Marchini, Jonathan ; Schork, Nicholas J.</creatorcontrib><description>Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%-20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000529</identifier><identifier>PMID: 19543373</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Genetic algorithms ; Genetics ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Genomics ; Genetics, Population ; Genome-Wide Association Study - methods ; Genomes ; Genotype ; Genotype & phenotype ; Haplotypes ; Humans ; Methods ; Multiple imputation (Statistics) ; Polymorphism ; Polymorphism, Single Nucleotide ; Single nucleotide polymorphisms ; Software ; Studies</subject><ispartof>PLoS genetics, 2009-06, Vol.5 (6), p.e1000529-e1000529</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Howie et al. 2009</rights><rights>2009 Howie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Howie BN, Donnelly P, Marchini J (2009) A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet 5(6): e1000529. doi:10.1371/journal.pgen.1000529</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3</citedby><cites>FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19543373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schork, Nicholas J.</contributor><creatorcontrib>Howie, Bryan N</creatorcontrib><creatorcontrib>Donnelly, Peter</creatorcontrib><creatorcontrib>Marchini, Jonathan</creatorcontrib><title>A flexible and accurate genotype imputation method for the next generation of genome-wide association studies</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%-20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.</description><subject>Accuracy</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Genomics</subject><subject>Genetics, Population</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Methods</subject><subject>Multiple imputation (Statistics)</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Single nucleotide polymorphisms</subject><subject>Software</subject><subject>Studies</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLwoIXMyZN26Q3wrD4MbC44NdtSJOTmSxpMyap7v57023VKXih5CLhnOd9E87JybKnGK0xofjVtRt8L-z6sIN-jRFCVdHcy05xVZEVLVF5_-h8kj0K4RohUrGGPsxOcFOVhFBymnWbXFu4Ma2FXPQqF1IOXkTIk6uLtwfITXcYoojG9XkHce9Urp3P4x7yHm7iyIGf0k7fqTpY_TAq2YXgpJlSIQ7KQHicPdDCBngy72fZl7dvPl-8X11evdtebC5XkmESV63GGGEQihSEKVyVWlQpQRUtWt3KuhIUCKayacsmnRtJCSNFVTY4xRsmyVn2fPI9WBf4XKnAMcEkUTWtE7GdCOXENT940wl_y50w_C7g_I4LH420wEtV1LVugTINJW4FK4mgdYlaphstapy8Xs-3DW0HSkIfvbAL02WmN3u-c995UbOmIeNjzmcD774NECLvTJBgrejBDYHXqYcMFyyBLyZwJ9LDTK9d8pMjzDcFStUqEEWJWv-FSktBZ6TrQZsUXwheLgSJiam3OzGEwLefPv4H--Hf2auvS_b8iN2DsHEfnB3G7xOWYDmB0rsQPOjfhcaIj5Pxq998nAw-T0aSPTtu0h_RPArkJzleCSE</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Howie, Bryan N</creator><creator>Donnelly, Peter</creator><creator>Marchini, Jonathan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20090601</creationdate><title>A flexible and accurate genotype imputation method for the next generation of genome-wide association studies</title><author>Howie, Bryan N ; Donnelly, Peter ; Marchini, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Genomics</topic><topic>Genetics, Population</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Methods</topic><topic>Multiple imputation (Statistics)</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Single nucleotide polymorphisms</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howie, Bryan N</creatorcontrib><creatorcontrib>Donnelly, Peter</creatorcontrib><creatorcontrib>Marchini, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howie, Bryan N</au><au>Donnelly, Peter</au><au>Marchini, Jonathan</au><au>Schork, Nicholas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A flexible and accurate genotype imputation method for the next generation of genome-wide association studies</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>5</volume><issue>6</issue><spage>e1000529</spage><epage>e1000529</epage><pages>e1000529-e1000529</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%-20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19543373</pmid><doi>10.1371/journal.pgen.1000529</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2009-06, Vol.5 (6), p.e1000529-e1000529 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1313549676 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Genetic algorithms Genetics Genetics and Genomics/Bioinformatics Genetics and Genomics/Genomics Genetics, Population Genome-Wide Association Study - methods Genomes Genotype Genotype & phenotype Haplotypes Humans Methods Multiple imputation (Statistics) Polymorphism Polymorphism, Single Nucleotide Single nucleotide polymorphisms Software Studies |
title | A flexible and accurate genotype imputation method for the next generation of genome-wide association studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20flexible%20and%20accurate%20genotype%20imputation%20method%20for%20the%20next%20generation%20of%20genome-wide%20association%20studies&rft.jtitle=PLoS%20genetics&rft.au=Howie,%20Bryan%20N&rft.date=2009-06-01&rft.volume=5&rft.issue=6&rft.spage=e1000529&rft.epage=e1000529&rft.pages=e1000529-e1000529&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000529&rft_dat=%3Cgale_plos_%3EA203232070%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c813t-bf1101ead3238d154fa58137d72bfbc65a7e317c9b495a79c7383254917e398c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67408128&rft_id=info:pmid/19543373&rft_galeid=A203232070&rfr_iscdi=true |