Loading…

Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts

Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using S...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2011-03, Vol.7 (3), p.e1001109-e1001109
Main Authors: Rocha, Luis E C, Liljeros, Fredrik, Holme, Petter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63
cites cdi_FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63
container_end_page e1001109
container_issue 3
container_start_page e1001109
container_title PLoS computational biology
container_volume 7
creator Rocha, Luis E C
Liljeros, Fredrik
Holme, Petter
description Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes, even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.
doi_str_mv 10.1371/journal.pcbi.1001109
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1314506308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A253627933</galeid><doaj_id>oai_doaj_org_article_77af69691c534a8c833be094554b87f0</doaj_id><sourcerecordid>A253627933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63</originalsourceid><addsrcrecordid>eNqVk1tv1DAQhSMEoqXwDxBE6gMguovvsV-QVuW2UgUSLbxajjNZvCRxiBNa_j3OZls1EgKhPNgZf-fEOZpJkscYLTHN8KutH7rGVMvW5m6JEcIYqTvJIeacLjLK5d1b-4PkQQhbhOJWifvJAcGMcULkYXJx7uqhMj0UKbSugNrZkLomNU0Kdes6Z02Vhtb0zvex4Lv42kB_6bvvqS9Tjk6w5GmAqyEeWN_0xvbhYXKvNFWAR_v1KPny7u3F6YfF2af369PV2cJKxPqFzaVh2JBMKIF5LilBkFljAFkhQAEgBCZTrFQUGQq4QKUEQljOrJCyEPQoeTr5tpUPeh9I0JhixpGgSEZiPRGFN1vddq423S_tjdO7gu822nS9sxXoLDNlvIjCllNmpJWU5oAU45zlMitR9DqZvMIltEM-c3vjvq52bkM9aEYxGfGX_8bDoIViNIv06_2vDHkNhYWmj1HPRPOTxn3TG_9TUyQQFjgaPNsbdP7HAKHXtQsWqso04IegJVdEYSlH8vlfSSwzIqnijET0eEI3JibkmtLHb9sR1yvCqSCZojRSyz9Q8dm1k2-gdLE-E7yYCca-gat-Y4YQ9Pr883-wH-csm1jb-RA6KG_yw0iPQ3PdI3ocGr0fmih7cjv7G9H1lNDf8i4R3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872839542</pqid></control><display><type>article</type><title>Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts</title><source>PubMed Central (Open access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Rocha, Luis E C ; Liljeros, Fredrik ; Holme, Petter</creator><contributor>Salathé, Marcel</contributor><creatorcontrib>Rocha, Luis E C ; Liljeros, Fredrik ; Holme, Petter ; Salathé, Marcel</creatorcontrib><description>Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes, even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1001109</identifier><identifier>PMID: 21445228</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Brazil - epidemiology ; Computer Simulation ; Disease Outbreaks ; Disease transmission ; Distribution ; Epidemics ; Female ; Fysik ; Health aspects ; Humans ; Infectious Diseases/Sexually Transmitted Diseases ; Internet ; Male ; Models, Biological ; Models, Statistical ; NATURAL SCIENCES ; NATURVETENSKAP ; Physics ; Physics/Interdisciplinary Physics ; Prostitution ; Public Health and Epidemiology/Epidemiology ; Public Health and Epidemiology/Infectious Diseases ; Sex ; Sex Work - statistics &amp; numerical data ; Sexual Partners ; Sexually transmitted diseases ; Sexually Transmitted Diseases - epidemiology ; Social aspects ; South Korea ; Studies</subject><ispartof>PLoS computational biology, 2011-03, Vol.7 (3), p.e1001109-e1001109</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Rocha et al. 2011</rights><rights>2011 Rocha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rocha LEC, Liljeros F, Holme P (2011) Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts. PLoS Comput Biol 7(3): e1001109. doi:10.1371/journal.pcbi.1001109</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63</citedby><cites>FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060161/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060161/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21445228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-69437$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43120$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Salathé, Marcel</contributor><creatorcontrib>Rocha, Luis E C</creatorcontrib><creatorcontrib>Liljeros, Fredrik</creatorcontrib><creatorcontrib>Holme, Petter</creatorcontrib><title>Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes, even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.</description><subject>Behavior</subject><subject>Brazil - epidemiology</subject><subject>Computer Simulation</subject><subject>Disease Outbreaks</subject><subject>Disease transmission</subject><subject>Distribution</subject><subject>Epidemics</subject><subject>Female</subject><subject>Fysik</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Infectious Diseases/Sexually Transmitted Diseases</subject><subject>Internet</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Physics</subject><subject>Physics/Interdisciplinary Physics</subject><subject>Prostitution</subject><subject>Public Health and Epidemiology/Epidemiology</subject><subject>Public Health and Epidemiology/Infectious Diseases</subject><subject>Sex</subject><subject>Sex Work - statistics &amp; numerical data</subject><subject>Sexual Partners</subject><subject>Sexually transmitted diseases</subject><subject>Sexually Transmitted Diseases - epidemiology</subject><subject>Social aspects</subject><subject>South Korea</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqVk1tv1DAQhSMEoqXwDxBE6gMguovvsV-QVuW2UgUSLbxajjNZvCRxiBNa_j3OZls1EgKhPNgZf-fEOZpJkscYLTHN8KutH7rGVMvW5m6JEcIYqTvJIeacLjLK5d1b-4PkQQhbhOJWifvJAcGMcULkYXJx7uqhMj0UKbSugNrZkLomNU0Kdes6Z02Vhtb0zvex4Lv42kB_6bvvqS9Tjk6w5GmAqyEeWN_0xvbhYXKvNFWAR_v1KPny7u3F6YfF2af369PV2cJKxPqFzaVh2JBMKIF5LilBkFljAFkhQAEgBCZTrFQUGQq4QKUEQljOrJCyEPQoeTr5tpUPeh9I0JhixpGgSEZiPRGFN1vddq423S_tjdO7gu822nS9sxXoLDNlvIjCllNmpJWU5oAU45zlMitR9DqZvMIltEM-c3vjvq52bkM9aEYxGfGX_8bDoIViNIv06_2vDHkNhYWmj1HPRPOTxn3TG_9TUyQQFjgaPNsbdP7HAKHXtQsWqso04IegJVdEYSlH8vlfSSwzIqnijET0eEI3JibkmtLHb9sR1yvCqSCZojRSyz9Q8dm1k2-gdLE-E7yYCca-gat-Y4YQ9Pr883-wH-csm1jb-RA6KG_yw0iPQ3PdI3ocGr0fmih7cjv7G9H1lNDf8i4R3w</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Rocha, Luis E C</creator><creator>Liljeros, Fredrik</creator><creator>Holme, Petter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><scope>ADHXS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20110301</creationdate><title>Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts</title><author>Rocha, Luis E C ; Liljeros, Fredrik ; Holme, Petter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Behavior</topic><topic>Brazil - epidemiology</topic><topic>Computer Simulation</topic><topic>Disease Outbreaks</topic><topic>Disease transmission</topic><topic>Distribution</topic><topic>Epidemics</topic><topic>Female</topic><topic>Fysik</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Infectious Diseases/Sexually Transmitted Diseases</topic><topic>Internet</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Physics</topic><topic>Physics/Interdisciplinary Physics</topic><topic>Prostitution</topic><topic>Public Health and Epidemiology/Epidemiology</topic><topic>Public Health and Epidemiology/Infectious Diseases</topic><topic>Sex</topic><topic>Sex Work - statistics &amp; numerical data</topic><topic>Sexual Partners</topic><topic>Sexually transmitted diseases</topic><topic>Sexually Transmitted Diseases - epidemiology</topic><topic>Social aspects</topic><topic>South Korea</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Luis E C</creatorcontrib><creatorcontrib>Liljeros, Fredrik</creatorcontrib><creatorcontrib>Holme, Petter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Luis E C</au><au>Liljeros, Fredrik</au><au>Holme, Petter</au><au>Salathé, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>7</volume><issue>3</issue><spage>e1001109</spage><epage>e1001109</epage><pages>e1001109-e1001109</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes, even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21445228</pmid><doi>10.1371/journal.pcbi.1001109</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2011-03, Vol.7 (3), p.e1001109-e1001109
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1314506308
source PubMed Central (Open access); ProQuest - Publicly Available Content Database
subjects Behavior
Brazil - epidemiology
Computer Simulation
Disease Outbreaks
Disease transmission
Distribution
Epidemics
Female
Fysik
Health aspects
Humans
Infectious Diseases/Sexually Transmitted Diseases
Internet
Male
Models, Biological
Models, Statistical
NATURAL SCIENCES
NATURVETENSKAP
Physics
Physics/Interdisciplinary Physics
Prostitution
Public Health and Epidemiology/Epidemiology
Public Health and Epidemiology/Infectious Diseases
Sex
Sex Work - statistics & numerical data
Sexual Partners
Sexually transmitted diseases
Sexually Transmitted Diseases - epidemiology
Social aspects
South Korea
Studies
title Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20epidemics%20in%20an%20empirical%20spatiotemporal%20network%20of%2050,185%20sexual%20contacts&rft.jtitle=PLoS%20computational%20biology&rft.au=Rocha,%20Luis%20E%20C&rft.date=2011-03-01&rft.volume=7&rft.issue=3&rft.spage=e1001109&rft.epage=e1001109&rft.pages=e1001109-e1001109&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1001109&rft_dat=%3Cgale_plos_%3EA253627933%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c804t-cb8a41a2769615b8320e7caae0c66e9ee00ea794f930a3e1d0f8e224b4c688d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1872839542&rft_id=info:pmid/21445228&rft_galeid=A253627933&rfr_iscdi=true