Loading…
RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS
RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS medi...
Saved in:
Published in: | PloS one 2012-01, Vol.7 (1), p.e29785-e29785 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3 |
container_end_page | e29785 |
container_issue | 1 |
container_start_page | e29785 |
container_title | PloS one |
container_volume | 7 |
creator | Jauvion, Vincent Rivard, Maud Bouteiller, Nathalie Elmayan, Taline Vaucheret, Hervé |
description | RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS mediated by 24-nt siRNAs, and for cell-to-cell spreading of IR-PTGS mediated by 21-nt siRNAs produced by inverted repeat transgenes under the control of a phloem-specific promoter.
In this study, we examined the role of RDR2 and RDR6 in S-PTGS. Unlike RDR6, RDR2 is not required for DNA methylation of transgenes subjected to S-PTGS. RDR6 is essential for the production of siRNAs by transgenes subjected to S-PTGS, but RDR2 also contributes to the production of transgene siRNAs when RDR6 is present because rdr2 mutations reduce transgene siRNA accumulation. However, the siRNAs produced via RDR2 likely are counteractive in wildtype plants because impairement of RDR2 increases S-PTGS efficiency at a transgenic locus that triggers limited silencing, and accelerates S-PTGS at a transgenic locus that triggers efficient silencing.
These results suggest that RDR2 and RDR6 compete for RNA substrates produced by transgenes subjected to S-PTGS. RDR2 partially antagonizes RDR6 because RDR2 action likely results in the production of counteractive siRNA. As a result, S-PTGS efficiency is increased in rdr2 mutants. |
doi_str_mv | 10.1371/journal.pone.0029785 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1322478345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477169935</galeid><doaj_id>oai_doaj_org_article_958e0d0bc50f48539b36d3452cd26ccd</doaj_id><sourcerecordid>A477169935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQgLtocV_Esd-QaoGbJUqhrrBq-XYN62n1O7iZGJ8ehyaTc00CZSHRDe_c6x7rm-SvMZoimmBP175rnGqnm69gylCRBQ8f5IcYkHJhBFEn-59HyQvQrhCKKecsefJASEkI7gQh0m5_Lwk6VY1rVV1fZsq16qVd_Y3hLRdQ7ptvOl0a71LfZVGmE0MbMEZcG0a7PLbLLUuDeACpG2jXFiBg8kGjFUtmPT75enFy-RZpeoAr4b3UfLj65fLk7PJ4vx0fjJbTDQntJ0QwQUyzBCADCteQi6MYKRguaZVxrIiK8ucoopzbBQmCmuBKDUVixrItaZHydud77b2QQ7xBIlpbLbgNMsjMd8RxqsruW3sRjW30isr_xZ8s5J9ELoGKXIOyKBS56jKeE5FSZmJHkQbwrQ20evTcFpXxnZ1zKNR9ch0_MfZtVz5G0lJTmiWRYPjncH6gexstpB9DWEsUIzmBkf2w3BY4687CK3c2KChrpUD3wUpCOOcR8G_ScxwjuLsI_nuAfl4ZAO1UjEV6yofm9G9p5xlRYGZELSnpo9Q8TGwsTpe0MrG-khwPBJEpoVf7Up1Icj5xfL_2fOfY_b9HrsGVbfr4Ouuv8BhDGY7UDc-hAaq-xFgJPv9uktD9vslh_2Ksjf7U78X3S0U_QPM1R2f</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322478345</pqid></control><display><type>article</type><title>RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jauvion, Vincent ; Rivard, Maud ; Bouteiller, Nathalie ; Elmayan, Taline ; Vaucheret, Hervé</creator><contributor>Meyer, Peter</contributor><creatorcontrib>Jauvion, Vincent ; Rivard, Maud ; Bouteiller, Nathalie ; Elmayan, Taline ; Vaucheret, Hervé ; Meyer, Peter</creatorcontrib><description>RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS mediated by 24-nt siRNAs, and for cell-to-cell spreading of IR-PTGS mediated by 21-nt siRNAs produced by inverted repeat transgenes under the control of a phloem-specific promoter.
In this study, we examined the role of RDR2 and RDR6 in S-PTGS. Unlike RDR6, RDR2 is not required for DNA methylation of transgenes subjected to S-PTGS. RDR6 is essential for the production of siRNAs by transgenes subjected to S-PTGS, but RDR2 also contributes to the production of transgene siRNAs when RDR6 is present because rdr2 mutations reduce transgene siRNA accumulation. However, the siRNAs produced via RDR2 likely are counteractive in wildtype plants because impairement of RDR2 increases S-PTGS efficiency at a transgenic locus that triggers limited silencing, and accelerates S-PTGS at a transgenic locus that triggers efficient silencing.
These results suggest that RDR2 and RDR6 compete for RNA substrates produced by transgenes subjected to S-PTGS. RDR2 partially antagonizes RDR6 because RDR2 action likely results in the production of counteractive siRNA. As a result, S-PTGS efficiency is increased in rdr2 mutants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0029785</identifier><identifier>PMID: 22242179</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Arabidopsis ; Biology ; Cell migration ; Cell spreading ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA Methylation - genetics ; DNA, Plant - metabolism ; Gene silencing ; Genes ; Genetic aspects ; Genetic engineering ; Inverted repeat ; Life Sciences ; Loci ; Methylation ; Mutants ; Mutation ; Plant Proteins - metabolism ; Post-transcription ; Promoters ; Proteins ; Ribonucleic acid ; RNA ; RNA Interference ; RNA polymerase ; RNA, Plant - metabolism ; RNA, Small Interfering - biosynthesis ; siRNA ; Substrates ; Transcription (Genetics) ; Transgenes ; Transgenes - genetics ; Transgenic plants ; Viruses</subject><ispartof>PloS one, 2012-01, Vol.7 (1), p.e29785-e29785</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Jauvion et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Jauvion et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3</citedby><cites>FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3</cites><orcidid>0000-0002-9986-0988 ; 0000-0002-4120-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1322478345/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1322478345?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22242179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01190823$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Meyer, Peter</contributor><creatorcontrib>Jauvion, Vincent</creatorcontrib><creatorcontrib>Rivard, Maud</creatorcontrib><creatorcontrib>Bouteiller, Nathalie</creatorcontrib><creatorcontrib>Elmayan, Taline</creatorcontrib><creatorcontrib>Vaucheret, Hervé</creatorcontrib><title>RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS mediated by 24-nt siRNAs, and for cell-to-cell spreading of IR-PTGS mediated by 21-nt siRNAs produced by inverted repeat transgenes under the control of a phloem-specific promoter.
In this study, we examined the role of RDR2 and RDR6 in S-PTGS. Unlike RDR6, RDR2 is not required for DNA methylation of transgenes subjected to S-PTGS. RDR6 is essential for the production of siRNAs by transgenes subjected to S-PTGS, but RDR2 also contributes to the production of transgene siRNAs when RDR6 is present because rdr2 mutations reduce transgene siRNA accumulation. However, the siRNAs produced via RDR2 likely are counteractive in wildtype plants because impairement of RDR2 increases S-PTGS efficiency at a transgenic locus that triggers limited silencing, and accelerates S-PTGS at a transgenic locus that triggers efficient silencing.
These results suggest that RDR2 and RDR6 compete for RNA substrates produced by transgenes subjected to S-PTGS. RDR2 partially antagonizes RDR6 because RDR2 action likely results in the production of counteractive siRNA. As a result, S-PTGS efficiency is increased in rdr2 mutants.</description><subject>Arabidopsis</subject><subject>Biology</subject><subject>Cell migration</subject><subject>Cell spreading</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>DNA, Plant - metabolism</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Inverted repeat</subject><subject>Life Sciences</subject><subject>Loci</subject><subject>Methylation</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Plant Proteins - metabolism</subject><subject>Post-transcription</subject><subject>Promoters</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA polymerase</subject><subject>RNA, Plant - metabolism</subject><subject>RNA, Small Interfering - biosynthesis</subject><subject>siRNA</subject><subject>Substrates</subject><subject>Transcription (Genetics)</subject><subject>Transgenes</subject><subject>Transgenes - genetics</subject><subject>Transgenic plants</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQgLtocV_Esd-QaoGbJUqhrrBq-XYN62n1O7iZGJ8ehyaTc00CZSHRDe_c6x7rm-SvMZoimmBP175rnGqnm69gylCRBQ8f5IcYkHJhBFEn-59HyQvQrhCKKecsefJASEkI7gQh0m5_Lwk6VY1rVV1fZsq16qVd_Y3hLRdQ7ptvOl0a71LfZVGmE0MbMEZcG0a7PLbLLUuDeACpG2jXFiBg8kGjFUtmPT75enFy-RZpeoAr4b3UfLj65fLk7PJ4vx0fjJbTDQntJ0QwQUyzBCADCteQi6MYKRguaZVxrIiK8ucoopzbBQmCmuBKDUVixrItaZHydud77b2QQ7xBIlpbLbgNMsjMd8RxqsruW3sRjW30isr_xZ8s5J9ELoGKXIOyKBS56jKeE5FSZmJHkQbwrQ20evTcFpXxnZ1zKNR9ch0_MfZtVz5G0lJTmiWRYPjncH6gexstpB9DWEsUIzmBkf2w3BY4687CK3c2KChrpUD3wUpCOOcR8G_ScxwjuLsI_nuAfl4ZAO1UjEV6yofm9G9p5xlRYGZELSnpo9Q8TGwsTpe0MrG-khwPBJEpoVf7Up1Icj5xfL_2fOfY_b9HrsGVbfr4Ouuv8BhDGY7UDc-hAaq-xFgJPv9uktD9vslh_2Ksjf7U78X3S0U_QPM1R2f</recordid><startdate>20120105</startdate><enddate>20120105</enddate><creator>Jauvion, Vincent</creator><creator>Rivard, Maud</creator><creator>Bouteiller, Nathalie</creator><creator>Elmayan, Taline</creator><creator>Vaucheret, Hervé</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9986-0988</orcidid><orcidid>https://orcid.org/0000-0002-4120-075X</orcidid></search><sort><creationdate>20120105</creationdate><title>RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS</title><author>Jauvion, Vincent ; Rivard, Maud ; Bouteiller, Nathalie ; Elmayan, Taline ; Vaucheret, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Biology</topic><topic>Cell migration</topic><topic>Cell spreading</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>DNA, Plant - metabolism</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Inverted repeat</topic><topic>Life Sciences</topic><topic>Loci</topic><topic>Methylation</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Plant Proteins - metabolism</topic><topic>Post-transcription</topic><topic>Promoters</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA polymerase</topic><topic>RNA, Plant - metabolism</topic><topic>RNA, Small Interfering - biosynthesis</topic><topic>siRNA</topic><topic>Substrates</topic><topic>Transcription (Genetics)</topic><topic>Transgenes</topic><topic>Transgenes - genetics</topic><topic>Transgenic plants</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jauvion, Vincent</creatorcontrib><creatorcontrib>Rivard, Maud</creatorcontrib><creatorcontrib>Bouteiller, Nathalie</creatorcontrib><creatorcontrib>Elmayan, Taline</creatorcontrib><creatorcontrib>Vaucheret, Hervé</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jauvion, Vincent</au><au>Rivard, Maud</au><au>Bouteiller, Nathalie</au><au>Elmayan, Taline</au><au>Vaucheret, Hervé</au><au>Meyer, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-01-05</date><risdate>2012</risdate><volume>7</volume><issue>1</issue><spage>e29785</spage><epage>e29785</epage><pages>e29785-e29785</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS mediated by 24-nt siRNAs, and for cell-to-cell spreading of IR-PTGS mediated by 21-nt siRNAs produced by inverted repeat transgenes under the control of a phloem-specific promoter.
In this study, we examined the role of RDR2 and RDR6 in S-PTGS. Unlike RDR6, RDR2 is not required for DNA methylation of transgenes subjected to S-PTGS. RDR6 is essential for the production of siRNAs by transgenes subjected to S-PTGS, but RDR2 also contributes to the production of transgene siRNAs when RDR6 is present because rdr2 mutations reduce transgene siRNA accumulation. However, the siRNAs produced via RDR2 likely are counteractive in wildtype plants because impairement of RDR2 increases S-PTGS efficiency at a transgenic locus that triggers limited silencing, and accelerates S-PTGS at a transgenic locus that triggers efficient silencing.
These results suggest that RDR2 and RDR6 compete for RNA substrates produced by transgenes subjected to S-PTGS. RDR2 partially antagonizes RDR6 because RDR2 action likely results in the production of counteractive siRNA. As a result, S-PTGS efficiency is increased in rdr2 mutants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22242179</pmid><doi>10.1371/journal.pone.0029785</doi><tpages>e29785</tpages><orcidid>https://orcid.org/0000-0002-9986-0988</orcidid><orcidid>https://orcid.org/0000-0002-4120-075X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-01, Vol.7 (1), p.e29785-e29785 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1322478345 |
source | Publicly Available Content Database; PubMed Central |
subjects | Arabidopsis Biology Cell migration Cell spreading Deoxyribonucleic acid DNA DNA methylation DNA Methylation - genetics DNA, Plant - metabolism Gene silencing Genes Genetic aspects Genetic engineering Inverted repeat Life Sciences Loci Methylation Mutants Mutation Plant Proteins - metabolism Post-transcription Promoters Proteins Ribonucleic acid RNA RNA Interference RNA polymerase RNA, Plant - metabolism RNA, Small Interfering - biosynthesis siRNA Substrates Transcription (Genetics) Transgenes Transgenes - genetics Transgenic plants Viruses |
title | RDR2 partially antagonizes the production of RDR6-dependent siRNA in sense transgene-mediated PTGS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RDR2%20partially%20antagonizes%20the%20production%20of%20RDR6-dependent%20siRNA%20in%20sense%20transgene-mediated%20PTGS&rft.jtitle=PloS%20one&rft.au=Jauvion,%20Vincent&rft.date=2012-01-05&rft.volume=7&rft.issue=1&rft.spage=e29785&rft.epage=e29785&rft.pages=e29785-e29785&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0029785&rft_dat=%3Cgale_plos_%3EA477169935%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c823t-29890d6d2ee41a8be59d962765c3f46474bb530f881da12a1c9033df6d6de5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1322478345&rft_id=info:pmid/22242179&rft_galeid=A477169935&rfr_iscdi=true |