Loading…

Protective gene expression changes elicited by an inherited defect in photoreceptor structure

Inherited defects in retinal photoreceptor structure impair visual transduction, disrupt relationship with the retinal pigment epithelium (RPE), and compromise cell viability. A variety of progressive retinal degenerative diseases can result, and knowledge of disease etiology remains incomplete. To...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-02, Vol.7 (2), p.e31371-e31371
Main Authors: Sharma, Yagya V, Cojocaru, Radu I, Ritter, Linda M, Khattree, Nidhi, Brooks, Matthew, Scott, Alison, Swaroop, Anand, Goldberg, Andrew F X
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inherited defects in retinal photoreceptor structure impair visual transduction, disrupt relationship with the retinal pigment epithelium (RPE), and compromise cell viability. A variety of progressive retinal degenerative diseases can result, and knowledge of disease etiology remains incomplete. To investigate pathogenic mechanisms in such instances, we have characterized rod photoreceptor and retinal gene expression changes in response to a defined insult to photoreceptor structure, using the retinal degeneration slow (rds) mouse model. Global gene expression profiling was performed on flow-sorted rds and wild-type rod photoreceptors immediately prior and subsequent to times at which OSs are normally elaborated. Dysregulated genes were identified via microarray hybridization, and selected candidates were validated using quantitative PCR analyses. Both the array and qPCR data revealed that gene expression changes were generally modest and dispersed amongst a variety of known functional networks. Although genes showing major (>5-fold) differential expression were identified in a few instances, nearly all displayed transient temporal profiles, returning to WT levels by postnatal day (P) 21. These observations suggest that major defects in photoreceptor cell structure may induce early homeostatic responses, which function in a protective manner to promote cell viability. We identified a single key gene, Egr1, that was dysregulated in a sustained fashion in rds rod photoreceptors and retina. Egr1 upregulation was associated with microglial activation and migration into the outer retina at times subsequent to the major peak of photoreceptor cell death. Interestingly, this response was accompanied by neurotrophic factor upregulation. We hypothesize that activation of Egr1 and neurotrophic factors may represent a protective immune mechanism which contributes to the characteristically slow retinal degeneration of the rds mouse model.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0031371