Loading…

Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza

It is believed that combined interventions may be more effective than individual interventions in mitigating epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions under different temporal settings. To better understand the problem, we...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-03, Vol.7 (3), p.e32203
Main Authors: Zhang, Tianyou, Fu, Xiuju, Ma, Stefan, Xiao, Gaoxi, Wong, Limsoon, Kwoh, Chee Keong, Lees, Michael, Lee, Gary Kee Khoon, Hung, Terence
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293
cites cdi_FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293
container_end_page
container_issue 3
container_start_page e32203
container_title PloS one
container_volume 7
creator Zhang, Tianyou
Fu, Xiuju
Ma, Stefan
Xiao, Gaoxi
Wong, Limsoon
Kwoh, Chee Keong
Lees, Michael
Lee, Gary Kee Khoon
Hung, Terence
description It is believed that combined interventions may be more effective than individual interventions in mitigating epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions under different temporal settings. To better understand the problem, we develop an individual-based simulation model running on top of contact networks based on real-life contact data in Singapore. We model and evaluate the spread of influenza epidemic with intervention strategies of workforce shift and its combination with school closure, and examine the impacts of temporal factors, namely the trigger threshold and the duration of an intervention. By comparing simulation results for intervention scenarios with different temporal factors, we find that combined interventions do not always outperform individual interventions and are more effective only when the duration is longer than 6 weeks or school closure is triggered at the 5% threshold; combined interventions may be more effective if school closure starts first when the duration is less than 4 weeks or workforce shift starts first when the duration is longer than 4 weeks. We therefore conclude that identifying the appropriate timing configuration is crucial for achieving optimal or near optimal performance in mitigating the spread of influenza epidemic. The results of this study are useful to policy makers in deliberating and planning individual and combined interventions.
doi_str_mv 10.1371/journal.pone.0032203
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323963836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477157188</galeid><doaj_id>oai_doaj_org_article_9718c39b19da43eaad072846950a445b</doaj_id><sourcerecordid>A477157188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLn0-iIsy6oDCwveXkOaS5sxbcYkHS-PfnLP7HSXqeyD9CEh-Z3_OeffnCR5itEK0xK_2bjRD9yutm5QK4QoIYjeS05xTcmygP39o_1J8iiEDUI5rYriYXJCSIZoQbPT5M_FjtuRRzO0aVT91nluU81FdD6kZkiF6xszKAn7qPxODdG4IaROpz-c_6adFyoNndEx5YNMg-ics6mwLoxepXCd9iaadtLvgN16xeU-3gzajmr4zR8nDzS3QT2Z1kXy5d3F5_MPy8ur9-vzs8ulKPMqLokkuEGl1JRkNdJNpbCmusyo5LlWOZVVhXNYZC6qOtMlKQslAUGoJBSTmi6S5wfdLZTHJvsCw5TQuqAV-LFI1gdCOr5hW2967n8xxw27PnC-ZdxHI6xidYkrQesG15JnVHEuIU2VFXWOeJblDWi9nbKNTa-kAOfA2pno_GYwHWvdjlEotapyEHg1CXj3fVQhst4Eoazlg3Ij1I1whlGNcwLoi3_Qu7ubqJZDA2C_g7xiL8rOsrLEObRUAbW6g4JPqt4IeGvawPks4PUsAJiofsaWjyGw9aeP_89efZ2zL4_YTnEbu-DseP0A52B2AIV3IXilb03GiO1H5cYNth8VNo0KhD07_kG3QTezQf8C41YPyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323963836</pqid></control><display><type>article</type><title>Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Sociological Abstracts</source><source>Coronavirus Research Database</source><creator>Zhang, Tianyou ; Fu, Xiuju ; Ma, Stefan ; Xiao, Gaoxi ; Wong, Limsoon ; Kwoh, Chee Keong ; Lees, Michael ; Lee, Gary Kee Khoon ; Hung, Terence</creator><contributor>Vespignani, Alessandro</contributor><creatorcontrib>Zhang, Tianyou ; Fu, Xiuju ; Ma, Stefan ; Xiao, Gaoxi ; Wong, Limsoon ; Kwoh, Chee Keong ; Lees, Michael ; Lee, Gary Kee Khoon ; Hung, Terence ; Vespignani, Alessandro</creatorcontrib><description>It is believed that combined interventions may be more effective than individual interventions in mitigating epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions under different temporal settings. To better understand the problem, we develop an individual-based simulation model running on top of contact networks based on real-life contact data in Singapore. We model and evaluate the spread of influenza epidemic with intervention strategies of workforce shift and its combination with school closure, and examine the impacts of temporal factors, namely the trigger threshold and the duration of an intervention. By comparing simulation results for intervention scenarios with different temporal factors, we find that combined interventions do not always outperform individual interventions and are more effective only when the duration is longer than 6 weeks or school closure is triggered at the 5% threshold; combined interventions may be more effective if school closure starts first when the duration is less than 4 weeks or workforce shift starts first when the duration is longer than 4 weeks. We therefore conclude that identifying the appropriate timing configuration is crucial for achieving optimal or near optimal performance in mitigating the spread of influenza epidemic. The results of this study are useful to policy makers in deliberating and planning individual and combined interventions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0032203</identifier><identifier>PMID: 22403634</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Biology ; Child ; Communicable Disease Control - methods ; Computer Science ; Computer simulation ; Data processing ; Disease control ; Epidemics ; Epidemics - prevention &amp; control ; Humans ; Infectious diseases ; Influenza ; Influenza, Human - epidemiology ; Influenza, Human - transmission ; Intervention ; Labor force ; Mathematical models ; Pandemics ; Policy making ; Population ; Public health ; Quantitative analysis ; Running ; School closures ; Schools ; Simulation ; Social structure ; Teams ; Time ; Time Factors ; Work ; Workforce</subject><ispartof>PloS one, 2012-03, Vol.7 (3), p.e32203</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Zhang et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293</citedby><cites>FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1323963836/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1323963836?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27344,27924,27925,33774,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22403634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vespignani, Alessandro</contributor><creatorcontrib>Zhang, Tianyou</creatorcontrib><creatorcontrib>Fu, Xiuju</creatorcontrib><creatorcontrib>Ma, Stefan</creatorcontrib><creatorcontrib>Xiao, Gaoxi</creatorcontrib><creatorcontrib>Wong, Limsoon</creatorcontrib><creatorcontrib>Kwoh, Chee Keong</creatorcontrib><creatorcontrib>Lees, Michael</creatorcontrib><creatorcontrib>Lee, Gary Kee Khoon</creatorcontrib><creatorcontrib>Hung, Terence</creatorcontrib><title>Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>It is believed that combined interventions may be more effective than individual interventions in mitigating epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions under different temporal settings. To better understand the problem, we develop an individual-based simulation model running on top of contact networks based on real-life contact data in Singapore. We model and evaluate the spread of influenza epidemic with intervention strategies of workforce shift and its combination with school closure, and examine the impacts of temporal factors, namely the trigger threshold and the duration of an intervention. By comparing simulation results for intervention scenarios with different temporal factors, we find that combined interventions do not always outperform individual interventions and are more effective only when the duration is longer than 6 weeks or school closure is triggered at the 5% threshold; combined interventions may be more effective if school closure starts first when the duration is less than 4 weeks or workforce shift starts first when the duration is longer than 4 weeks. We therefore conclude that identifying the appropriate timing configuration is crucial for achieving optimal or near optimal performance in mitigating the spread of influenza epidemic. The results of this study are useful to policy makers in deliberating and planning individual and combined interventions.</description><subject>Adult</subject><subject>Biology</subject><subject>Child</subject><subject>Communicable Disease Control - methods</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Epidemics - prevention &amp; control</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - transmission</subject><subject>Intervention</subject><subject>Labor force</subject><subject>Mathematical models</subject><subject>Pandemics</subject><subject>Policy making</subject><subject>Population</subject><subject>Public health</subject><subject>Quantitative analysis</subject><subject>Running</subject><subject>School closures</subject><subject>Schools</subject><subject>Simulation</subject><subject>Social structure</subject><subject>Teams</subject><subject>Time</subject><subject>Time Factors</subject><subject>Work</subject><subject>Workforce</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLn0-iIsy6oDCwveXkOaS5sxbcYkHS-PfnLP7HSXqeyD9CEh-Z3_OeffnCR5itEK0xK_2bjRD9yutm5QK4QoIYjeS05xTcmygP39o_1J8iiEDUI5rYriYXJCSIZoQbPT5M_FjtuRRzO0aVT91nluU81FdD6kZkiF6xszKAn7qPxODdG4IaROpz-c_6adFyoNndEx5YNMg-ics6mwLoxepXCd9iaadtLvgN16xeU-3gzajmr4zR8nDzS3QT2Z1kXy5d3F5_MPy8ur9-vzs8ulKPMqLokkuEGl1JRkNdJNpbCmusyo5LlWOZVVhXNYZC6qOtMlKQslAUGoJBSTmi6S5wfdLZTHJvsCw5TQuqAV-LFI1gdCOr5hW2967n8xxw27PnC-ZdxHI6xidYkrQesG15JnVHEuIU2VFXWOeJblDWi9nbKNTa-kAOfA2pno_GYwHWvdjlEotapyEHg1CXj3fVQhst4Eoazlg3Ij1I1whlGNcwLoi3_Qu7ubqJZDA2C_g7xiL8rOsrLEObRUAbW6g4JPqt4IeGvawPks4PUsAJiofsaWjyGw9aeP_89efZ2zL4_YTnEbu-DseP0A52B2AIV3IXilb03GiO1H5cYNth8VNo0KhD07_kG3QTezQf8C41YPyg</recordid><startdate>20120305</startdate><enddate>20120305</enddate><creator>Zhang, Tianyou</creator><creator>Fu, Xiuju</creator><creator>Ma, Stefan</creator><creator>Xiao, Gaoxi</creator><creator>Wong, Limsoon</creator><creator>Kwoh, Chee Keong</creator><creator>Lees, Michael</creator><creator>Lee, Gary Kee Khoon</creator><creator>Hung, Terence</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U4</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>WZK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120305</creationdate><title>Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza</title><author>Zhang, Tianyou ; Fu, Xiuju ; Ma, Stefan ; Xiao, Gaoxi ; Wong, Limsoon ; Kwoh, Chee Keong ; Lees, Michael ; Lee, Gary Kee Khoon ; Hung, Terence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Biology</topic><topic>Child</topic><topic>Communicable Disease Control - methods</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Epidemics - prevention &amp; control</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - transmission</topic><topic>Intervention</topic><topic>Labor force</topic><topic>Mathematical models</topic><topic>Pandemics</topic><topic>Policy making</topic><topic>Population</topic><topic>Public health</topic><topic>Quantitative analysis</topic><topic>Running</topic><topic>School closures</topic><topic>Schools</topic><topic>Simulation</topic><topic>Social structure</topic><topic>Teams</topic><topic>Time</topic><topic>Time Factors</topic><topic>Work</topic><topic>Workforce</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianyou</creatorcontrib><creatorcontrib>Fu, Xiuju</creatorcontrib><creatorcontrib>Ma, Stefan</creatorcontrib><creatorcontrib>Xiao, Gaoxi</creatorcontrib><creatorcontrib>Wong, Limsoon</creatorcontrib><creatorcontrib>Kwoh, Chee Keong</creatorcontrib><creatorcontrib>Lees, Michael</creatorcontrib><creatorcontrib>Lee, Gary Kee Khoon</creatorcontrib><creatorcontrib>Hung, Terence</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianyou</au><au>Fu, Xiuju</au><au>Ma, Stefan</au><au>Xiao, Gaoxi</au><au>Wong, Limsoon</au><au>Kwoh, Chee Keong</au><au>Lees, Michael</au><au>Lee, Gary Kee Khoon</au><au>Hung, Terence</au><au>Vespignani, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-03-05</date><risdate>2012</risdate><volume>7</volume><issue>3</issue><spage>e32203</spage><pages>e32203-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>It is believed that combined interventions may be more effective than individual interventions in mitigating epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions under different temporal settings. To better understand the problem, we develop an individual-based simulation model running on top of contact networks based on real-life contact data in Singapore. We model and evaluate the spread of influenza epidemic with intervention strategies of workforce shift and its combination with school closure, and examine the impacts of temporal factors, namely the trigger threshold and the duration of an intervention. By comparing simulation results for intervention scenarios with different temporal factors, we find that combined interventions do not always outperform individual interventions and are more effective only when the duration is longer than 6 weeks or school closure is triggered at the 5% threshold; combined interventions may be more effective if school closure starts first when the duration is less than 4 weeks or workforce shift starts first when the duration is longer than 4 weeks. We therefore conclude that identifying the appropriate timing configuration is crucial for achieving optimal or near optimal performance in mitigating the spread of influenza epidemic. The results of this study are useful to policy makers in deliberating and planning individual and combined interventions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22403634</pmid><doi>10.1371/journal.pone.0032203</doi><tpages>e32203</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-03, Vol.7 (3), p.e32203
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1323963836
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Sociological Abstracts; Coronavirus Research Database
subjects Adult
Biology
Child
Communicable Disease Control - methods
Computer Science
Computer simulation
Data processing
Disease control
Epidemics
Epidemics - prevention & control
Humans
Infectious diseases
Influenza
Influenza, Human - epidemiology
Influenza, Human - transmission
Intervention
Labor force
Mathematical models
Pandemics
Policy making
Population
Public health
Quantitative analysis
Running
School closures
Schools
Simulation
Social structure
Teams
Time
Time Factors
Work
Workforce
title Evaluating temporal factors in combined interventions of workforce shift and school closure for mitigating the spread of influenza
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20temporal%20factors%20in%20combined%20interventions%20of%20workforce%20shift%20and%20school%20closure%20for%20mitigating%20the%20spread%20of%20influenza&rft.jtitle=PloS%20one&rft.au=Zhang,%20Tianyou&rft.date=2012-03-05&rft.volume=7&rft.issue=3&rft.spage=e32203&rft.pages=e32203-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0032203&rft_dat=%3Cgale_plos_%3EA477157188%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-2d21b07df32490fb8e1f3f743da5fe53d881553dd5c894f7276ed1f3007231293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323963836&rft_id=info:pmid/22403634&rft_galeid=A477157188&rfr_iscdi=true