Loading…
Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes
Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty ac...
Saved in:
Published in: | PloS one 2012-03, Vol.7 (3), p.e33283 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03 |
container_end_page | |
container_issue | 3 |
container_start_page | e33283 |
container_title | PloS one |
container_volume | 7 |
creator | Matsui, Hiroki Yokoyama, Tomoyuki Sekiguchi, Kenichi Iijima, Daisuke Sunaga, Hiroaki Maniwa, Moeno Ueno, Manabu Iso, Tatsuya Arai, Masashi Kurabayashi, Masahiko |
description | Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis. |
doi_str_mv | 10.1371/journal.pone.0033283 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323999873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477145367</galeid><doaj_id>oai_doaj_org_article_30b43232f06348f9a767986849e0638f</doaj_id><sourcerecordid>A477145367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</originalsourceid><addsrcrecordid>eNp1Uk-P1CAcbYzGXVe_gdEmXvTQEfhRKBeTyfhvk008rJ4JBTrLpC0VqEnvfnBZp7vZSTQcIO_33uNBXlG8xGiDgeP3Bz-HUfWbyY92gxAAaeBRcY4FkIoRBI8fnM-KZzEeEKqhYexpcUYIxYAwOi9-Xyergl_6aue3pbFRpTmoaCtcvr3efcTvSjXvBzumWB5HyZqyUyktpdLOVG40s85Q7yZnMqTnYe5Vcn4s1WhKN9641mWxmvyUfHQxQ6VWwTily2Hxekk2Pi-edKqP9sW6XxQ_Pn_6vvtaXX37crnbXlWa1U2qKKOo5rZFjAgrMMOMN6ThhrVUYVVTYAC85UiQ1tZgkcCtINC0DFum6w7BRfH66Dv1Psr1A6PEQEAI0XDIjMsjw3h1kFNwgwqL9MrJv4APe6lCcrq3ElBLs5B0iAFtOqE446JhDRU2I02XvT6st83tYI3OnxhUf2J6Ohndjdz7XxKI4IySbPBmNQj-52xj-k_klbVXOZUbO5_N9OCillvKOaY1MJ5Zm3-w8jJ2cDpXqHMZPxHQo0AHH2Ow3X1wjORtAe_CyNsCyrWAWfbq4aPvRXeNgz_lftdI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323999873</pqid></control><display><type>article</type><title>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Matsui, Hiroki ; Yokoyama, Tomoyuki ; Sekiguchi, Kenichi ; Iijima, Daisuke ; Sunaga, Hiroaki ; Maniwa, Moeno ; Ueno, Manabu ; Iso, Tatsuya ; Arai, Masashi ; Kurabayashi, Masahiko</creator><contributor>Stadler, Krisztian</contributor><creatorcontrib>Matsui, Hiroki ; Yokoyama, Tomoyuki ; Sekiguchi, Kenichi ; Iijima, Daisuke ; Sunaga, Hiroaki ; Maniwa, Moeno ; Ueno, Manabu ; Iso, Tatsuya ; Arai, Masashi ; Kurabayashi, Masahiko ; Stadler, Krisztian</creatorcontrib><description>Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0033283</identifier><identifier>PMID: 22413010</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Adenoviruses ; Adipocytes ; Animals ; Apoptosis ; Apoptosis - drug effects ; Atherosclerosis ; Biology ; Blood Glucose - metabolism ; Cardiomyocytes ; Cardiomyopathy ; Caspase ; Caspase-3 ; Catabolism ; Cell death ; Cells, Cultured ; Ceramide ; Coenzyme A ; Dehydrogenases ; Desaturase ; Diabetes ; Diet ; Diet - adverse effects ; Diglycerides ; Energy metabolism ; Enzymes ; Fatty acids ; Fatty Acids - pharmacology ; Fatty Acids, Nonesterified - metabolism ; Gene expression ; Gene Expression - drug effects ; Genes ; Glucose ; Health sciences ; Heart ; Heart diseases ; Humans ; Hydrogen Peroxide - pharmacology ; Hypertension ; Insulin ; Insulin - metabolism ; Insulin resistance ; Kinases ; Laboratories ; Ligands ; Lipid Metabolism ; Lipids ; Male ; Medicine ; Metabolic disorders ; Metabolic syndrome ; Metabolism ; Mitochondria ; Monounsaturated fatty acids ; Myocardium ; Myocardium - metabolism ; Myocytes ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Neonates ; Obesity ; Obesity, Abdominal - etiology ; Oxidants - pharmacology ; Oxidation ; Oxidation-Reduction ; Oxygen ; Palmitic acid ; Physiological aspects ; Rats ; Rats, Wistar ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Saturated fatty acids ; siRNA ; Stearoyl-CoA desaturase ; Stearoyl-CoA Desaturase - genetics ; Stearoyl-CoA Desaturase - metabolism ; Studies ; Sucrose ; Sugar ; Synthesis ; Type 2 diabetes ; University graduates</subject><ispartof>PloS one, 2012-03, Vol.7 (3), p.e33283</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Matsui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Matsui et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</citedby><cites>FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1323999873/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1323999873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22413010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stadler, Krisztian</contributor><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Yokoyama, Tomoyuki</creatorcontrib><creatorcontrib>Sekiguchi, Kenichi</creatorcontrib><creatorcontrib>Iijima, Daisuke</creatorcontrib><creatorcontrib>Sunaga, Hiroaki</creatorcontrib><creatorcontrib>Maniwa, Moeno</creatorcontrib><creatorcontrib>Ueno, Manabu</creatorcontrib><creatorcontrib>Iso, Tatsuya</creatorcontrib><creatorcontrib>Arai, Masashi</creatorcontrib><creatorcontrib>Kurabayashi, Masahiko</creatorcontrib><title>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.</description><subject>Accumulation</subject><subject>Adenoviruses</subject><subject>Adipocytes</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Atherosclerosis</subject><subject>Biology</subject><subject>Blood Glucose - metabolism</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>Catabolism</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Ceramide</subject><subject>Coenzyme A</subject><subject>Dehydrogenases</subject><subject>Desaturase</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Diet - adverse effects</subject><subject>Diglycerides</subject><subject>Energy metabolism</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - pharmacology</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Genes</subject><subject>Glucose</subject><subject>Health sciences</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Hypertension</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Male</subject><subject>Medicine</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Monounsaturated fatty acids</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Neonates</subject><subject>Obesity</subject><subject>Obesity, Abdominal - etiology</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Palmitic acid</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Saturated fatty acids</subject><subject>siRNA</subject><subject>Stearoyl-CoA desaturase</subject><subject>Stearoyl-CoA Desaturase - genetics</subject><subject>Stearoyl-CoA Desaturase - metabolism</subject><subject>Studies</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Synthesis</subject><subject>Type 2 diabetes</subject><subject>University graduates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk-P1CAcbYzGXVe_gdEmXvTQEfhRKBeTyfhvk008rJ4JBTrLpC0VqEnvfnBZp7vZSTQcIO_33uNBXlG8xGiDgeP3Bz-HUfWbyY92gxAAaeBRcY4FkIoRBI8fnM-KZzEeEKqhYexpcUYIxYAwOi9-Xyergl_6aue3pbFRpTmoaCtcvr3efcTvSjXvBzumWB5HyZqyUyktpdLOVG40s85Q7yZnMqTnYe5Vcn4s1WhKN9641mWxmvyUfHQxQ6VWwTily2Hxekk2Pi-edKqP9sW6XxQ_Pn_6vvtaXX37crnbXlWa1U2qKKOo5rZFjAgrMMOMN6ThhrVUYVVTYAC85UiQ1tZgkcCtINC0DFum6w7BRfH66Dv1Psr1A6PEQEAI0XDIjMsjw3h1kFNwgwqL9MrJv4APe6lCcrq3ElBLs5B0iAFtOqE446JhDRU2I02XvT6st83tYI3OnxhUf2J6Ohndjdz7XxKI4IySbPBmNQj-52xj-k_klbVXOZUbO5_N9OCillvKOaY1MJ5Zm3-w8jJ2cDpXqHMZPxHQo0AHH2Ow3X1wjORtAe_CyNsCyrWAWfbq4aPvRXeNgz_lftdI</recordid><startdate>20120308</startdate><enddate>20120308</enddate><creator>Matsui, Hiroki</creator><creator>Yokoyama, Tomoyuki</creator><creator>Sekiguchi, Kenichi</creator><creator>Iijima, Daisuke</creator><creator>Sunaga, Hiroaki</creator><creator>Maniwa, Moeno</creator><creator>Ueno, Manabu</creator><creator>Iso, Tatsuya</creator><creator>Arai, Masashi</creator><creator>Kurabayashi, Masahiko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120308</creationdate><title>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</title><author>Matsui, Hiroki ; Yokoyama, Tomoyuki ; Sekiguchi, Kenichi ; Iijima, Daisuke ; Sunaga, Hiroaki ; Maniwa, Moeno ; Ueno, Manabu ; Iso, Tatsuya ; Arai, Masashi ; Kurabayashi, Masahiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accumulation</topic><topic>Adenoviruses</topic><topic>Adipocytes</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Atherosclerosis</topic><topic>Biology</topic><topic>Blood Glucose - metabolism</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>Catabolism</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Ceramide</topic><topic>Coenzyme A</topic><topic>Dehydrogenases</topic><topic>Desaturase</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Diet - adverse effects</topic><topic>Diglycerides</topic><topic>Energy metabolism</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - pharmacology</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Genes</topic><topic>Glucose</topic><topic>Health sciences</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Hypertension</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Male</topic><topic>Medicine</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Monounsaturated fatty acids</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Neonates</topic><topic>Obesity</topic><topic>Obesity, Abdominal - etiology</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Palmitic acid</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Saturated fatty acids</topic><topic>siRNA</topic><topic>Stearoyl-CoA desaturase</topic><topic>Stearoyl-CoA Desaturase - genetics</topic><topic>Stearoyl-CoA Desaturase - metabolism</topic><topic>Studies</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Synthesis</topic><topic>Type 2 diabetes</topic><topic>University graduates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Yokoyama, Tomoyuki</creatorcontrib><creatorcontrib>Sekiguchi, Kenichi</creatorcontrib><creatorcontrib>Iijima, Daisuke</creatorcontrib><creatorcontrib>Sunaga, Hiroaki</creatorcontrib><creatorcontrib>Maniwa, Moeno</creatorcontrib><creatorcontrib>Ueno, Manabu</creatorcontrib><creatorcontrib>Iso, Tatsuya</creatorcontrib><creatorcontrib>Arai, Masashi</creatorcontrib><creatorcontrib>Kurabayashi, Masahiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsui, Hiroki</au><au>Yokoyama, Tomoyuki</au><au>Sekiguchi, Kenichi</au><au>Iijima, Daisuke</au><au>Sunaga, Hiroaki</au><au>Maniwa, Moeno</au><au>Ueno, Manabu</au><au>Iso, Tatsuya</au><au>Arai, Masashi</au><au>Kurabayashi, Masahiko</au><au>Stadler, Krisztian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-03-08</date><risdate>2012</risdate><volume>7</volume><issue>3</issue><spage>e33283</spage><pages>e33283-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22413010</pmid><doi>10.1371/journal.pone.0033283</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-03, Vol.7 (3), p.e33283 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1323999873 |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Accumulation Adenoviruses Adipocytes Animals Apoptosis Apoptosis - drug effects Atherosclerosis Biology Blood Glucose - metabolism Cardiomyocytes Cardiomyopathy Caspase Caspase-3 Catabolism Cell death Cells, Cultured Ceramide Coenzyme A Dehydrogenases Desaturase Diabetes Diet Diet - adverse effects Diglycerides Energy metabolism Enzymes Fatty acids Fatty Acids - pharmacology Fatty Acids, Nonesterified - metabolism Gene expression Gene Expression - drug effects Genes Glucose Health sciences Heart Heart diseases Humans Hydrogen Peroxide - pharmacology Hypertension Insulin Insulin - metabolism Insulin resistance Kinases Laboratories Ligands Lipid Metabolism Lipids Male Medicine Metabolic disorders Metabolic syndrome Metabolism Mitochondria Monounsaturated fatty acids Myocardium Myocardium - metabolism Myocytes Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Neonates Obesity Obesity, Abdominal - etiology Oxidants - pharmacology Oxidation Oxidation-Reduction Oxygen Palmitic acid Physiological aspects Rats Rats, Wistar Reactive oxygen species Reactive Oxygen Species - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Rodents Saturated fatty acids siRNA Stearoyl-CoA desaturase Stearoyl-CoA Desaturase - genetics Stearoyl-CoA Desaturase - metabolism Studies Sucrose Sugar Synthesis Type 2 diabetes University graduates |
title | Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stearoyl-CoA%20desaturase-1%20(SCD1)%20augments%20saturated%20fatty%20acid-induced%20lipid%20accumulation%20and%20inhibits%20apoptosis%20in%20cardiac%20myocytes&rft.jtitle=PloS%20one&rft.au=Matsui,%20Hiroki&rft.date=2012-03-08&rft.volume=7&rft.issue=3&rft.spage=e33283&rft.pages=e33283-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0033283&rft_dat=%3Cgale_plos_%3EA477145367%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323999873&rft_id=info:pmid/22413010&rft_galeid=A477145367&rfr_iscdi=true |