Loading…

Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes

Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty ac...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-03, Vol.7 (3), p.e33283
Main Authors: Matsui, Hiroki, Yokoyama, Tomoyuki, Sekiguchi, Kenichi, Iijima, Daisuke, Sunaga, Hiroaki, Maniwa, Moeno, Ueno, Manabu, Iso, Tatsuya, Arai, Masashi, Kurabayashi, Masahiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03
cites cdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03
container_end_page
container_issue 3
container_start_page e33283
container_title PloS one
container_volume 7
creator Matsui, Hiroki
Yokoyama, Tomoyuki
Sekiguchi, Kenichi
Iijima, Daisuke
Sunaga, Hiroaki
Maniwa, Moeno
Ueno, Manabu
Iso, Tatsuya
Arai, Masashi
Kurabayashi, Masahiko
description Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.
doi_str_mv 10.1371/journal.pone.0033283
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1323999873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477145367</galeid><doaj_id>oai_doaj_org_article_30b43232f06348f9a767986849e0638f</doaj_id><sourcerecordid>A477145367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</originalsourceid><addsrcrecordid>eNp1Uk-P1CAcbYzGXVe_gdEmXvTQEfhRKBeTyfhvk008rJ4JBTrLpC0VqEnvfnBZp7vZSTQcIO_33uNBXlG8xGiDgeP3Bz-HUfWbyY92gxAAaeBRcY4FkIoRBI8fnM-KZzEeEKqhYexpcUYIxYAwOi9-Xyergl_6aue3pbFRpTmoaCtcvr3efcTvSjXvBzumWB5HyZqyUyktpdLOVG40s85Q7yZnMqTnYe5Vcn4s1WhKN9641mWxmvyUfHQxQ6VWwTily2Hxekk2Pi-edKqP9sW6XxQ_Pn_6vvtaXX37crnbXlWa1U2qKKOo5rZFjAgrMMOMN6ThhrVUYVVTYAC85UiQ1tZgkcCtINC0DFum6w7BRfH66Dv1Psr1A6PEQEAI0XDIjMsjw3h1kFNwgwqL9MrJv4APe6lCcrq3ElBLs5B0iAFtOqE446JhDRU2I02XvT6st83tYI3OnxhUf2J6Ohndjdz7XxKI4IySbPBmNQj-52xj-k_klbVXOZUbO5_N9OCillvKOaY1MJ5Zm3-w8jJ2cDpXqHMZPxHQo0AHH2Ow3X1wjORtAe_CyNsCyrWAWfbq4aPvRXeNgz_lftdI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323999873</pqid></control><display><type>article</type><title>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Matsui, Hiroki ; Yokoyama, Tomoyuki ; Sekiguchi, Kenichi ; Iijima, Daisuke ; Sunaga, Hiroaki ; Maniwa, Moeno ; Ueno, Manabu ; Iso, Tatsuya ; Arai, Masashi ; Kurabayashi, Masahiko</creator><contributor>Stadler, Krisztian</contributor><creatorcontrib>Matsui, Hiroki ; Yokoyama, Tomoyuki ; Sekiguchi, Kenichi ; Iijima, Daisuke ; Sunaga, Hiroaki ; Maniwa, Moeno ; Ueno, Manabu ; Iso, Tatsuya ; Arai, Masashi ; Kurabayashi, Masahiko ; Stadler, Krisztian</creatorcontrib><description>Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0033283</identifier><identifier>PMID: 22413010</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accumulation ; Adenoviruses ; Adipocytes ; Animals ; Apoptosis ; Apoptosis - drug effects ; Atherosclerosis ; Biology ; Blood Glucose - metabolism ; Cardiomyocytes ; Cardiomyopathy ; Caspase ; Caspase-3 ; Catabolism ; Cell death ; Cells, Cultured ; Ceramide ; Coenzyme A ; Dehydrogenases ; Desaturase ; Diabetes ; Diet ; Diet - adverse effects ; Diglycerides ; Energy metabolism ; Enzymes ; Fatty acids ; Fatty Acids - pharmacology ; Fatty Acids, Nonesterified - metabolism ; Gene expression ; Gene Expression - drug effects ; Genes ; Glucose ; Health sciences ; Heart ; Heart diseases ; Humans ; Hydrogen Peroxide - pharmacology ; Hypertension ; Insulin ; Insulin - metabolism ; Insulin resistance ; Kinases ; Laboratories ; Ligands ; Lipid Metabolism ; Lipids ; Male ; Medicine ; Metabolic disorders ; Metabolic syndrome ; Metabolism ; Mitochondria ; Monounsaturated fatty acids ; Myocardium ; Myocardium - metabolism ; Myocytes ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Neonates ; Obesity ; Obesity, Abdominal - etiology ; Oxidants - pharmacology ; Oxidation ; Oxidation-Reduction ; Oxygen ; Palmitic acid ; Physiological aspects ; Rats ; Rats, Wistar ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Rodents ; Saturated fatty acids ; siRNA ; Stearoyl-CoA desaturase ; Stearoyl-CoA Desaturase - genetics ; Stearoyl-CoA Desaturase - metabolism ; Studies ; Sucrose ; Sugar ; Synthesis ; Type 2 diabetes ; University graduates</subject><ispartof>PloS one, 2012-03, Vol.7 (3), p.e33283</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Matsui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Matsui et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</citedby><cites>FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1323999873/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1323999873?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22413010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stadler, Krisztian</contributor><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Yokoyama, Tomoyuki</creatorcontrib><creatorcontrib>Sekiguchi, Kenichi</creatorcontrib><creatorcontrib>Iijima, Daisuke</creatorcontrib><creatorcontrib>Sunaga, Hiroaki</creatorcontrib><creatorcontrib>Maniwa, Moeno</creatorcontrib><creatorcontrib>Ueno, Manabu</creatorcontrib><creatorcontrib>Iso, Tatsuya</creatorcontrib><creatorcontrib>Arai, Masashi</creatorcontrib><creatorcontrib>Kurabayashi, Masahiko</creatorcontrib><title>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.</description><subject>Accumulation</subject><subject>Adenoviruses</subject><subject>Adipocytes</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Atherosclerosis</subject><subject>Biology</subject><subject>Blood Glucose - metabolism</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Caspase</subject><subject>Caspase-3</subject><subject>Catabolism</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Ceramide</subject><subject>Coenzyme A</subject><subject>Dehydrogenases</subject><subject>Desaturase</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Diet - adverse effects</subject><subject>Diglycerides</subject><subject>Energy metabolism</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - pharmacology</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression - drug effects</subject><subject>Genes</subject><subject>Glucose</subject><subject>Health sciences</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Hypertension</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Ligands</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Male</subject><subject>Medicine</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Monounsaturated fatty acids</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Neonates</subject><subject>Obesity</subject><subject>Obesity, Abdominal - etiology</subject><subject>Oxidants - pharmacology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Palmitic acid</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Saturated fatty acids</subject><subject>siRNA</subject><subject>Stearoyl-CoA desaturase</subject><subject>Stearoyl-CoA Desaturase - genetics</subject><subject>Stearoyl-CoA Desaturase - metabolism</subject><subject>Studies</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Synthesis</subject><subject>Type 2 diabetes</subject><subject>University graduates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk-P1CAcbYzGXVe_gdEmXvTQEfhRKBeTyfhvk008rJ4JBTrLpC0VqEnvfnBZp7vZSTQcIO_33uNBXlG8xGiDgeP3Bz-HUfWbyY92gxAAaeBRcY4FkIoRBI8fnM-KZzEeEKqhYexpcUYIxYAwOi9-Xyergl_6aue3pbFRpTmoaCtcvr3efcTvSjXvBzumWB5HyZqyUyktpdLOVG40s85Q7yZnMqTnYe5Vcn4s1WhKN9641mWxmvyUfHQxQ6VWwTily2Hxekk2Pi-edKqP9sW6XxQ_Pn_6vvtaXX37crnbXlWa1U2qKKOo5rZFjAgrMMOMN6ThhrVUYVVTYAC85UiQ1tZgkcCtINC0DFum6w7BRfH66Dv1Psr1A6PEQEAI0XDIjMsjw3h1kFNwgwqL9MrJv4APe6lCcrq3ElBLs5B0iAFtOqE446JhDRU2I02XvT6st83tYI3OnxhUf2J6Ohndjdz7XxKI4IySbPBmNQj-52xj-k_klbVXOZUbO5_N9OCillvKOaY1MJ5Zm3-w8jJ2cDpXqHMZPxHQo0AHH2Ow3X1wjORtAe_CyNsCyrWAWfbq4aPvRXeNgz_lftdI</recordid><startdate>20120308</startdate><enddate>20120308</enddate><creator>Matsui, Hiroki</creator><creator>Yokoyama, Tomoyuki</creator><creator>Sekiguchi, Kenichi</creator><creator>Iijima, Daisuke</creator><creator>Sunaga, Hiroaki</creator><creator>Maniwa, Moeno</creator><creator>Ueno, Manabu</creator><creator>Iso, Tatsuya</creator><creator>Arai, Masashi</creator><creator>Kurabayashi, Masahiko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120308</creationdate><title>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</title><author>Matsui, Hiroki ; Yokoyama, Tomoyuki ; Sekiguchi, Kenichi ; Iijima, Daisuke ; Sunaga, Hiroaki ; Maniwa, Moeno ; Ueno, Manabu ; Iso, Tatsuya ; Arai, Masashi ; Kurabayashi, Masahiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accumulation</topic><topic>Adenoviruses</topic><topic>Adipocytes</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Atherosclerosis</topic><topic>Biology</topic><topic>Blood Glucose - metabolism</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Caspase</topic><topic>Caspase-3</topic><topic>Catabolism</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Ceramide</topic><topic>Coenzyme A</topic><topic>Dehydrogenases</topic><topic>Desaturase</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Diet - adverse effects</topic><topic>Diglycerides</topic><topic>Energy metabolism</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - pharmacology</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression - drug effects</topic><topic>Genes</topic><topic>Glucose</topic><topic>Health sciences</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Hypertension</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Ligands</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Male</topic><topic>Medicine</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Monounsaturated fatty acids</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Neonates</topic><topic>Obesity</topic><topic>Obesity, Abdominal - etiology</topic><topic>Oxidants - pharmacology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Palmitic acid</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Saturated fatty acids</topic><topic>siRNA</topic><topic>Stearoyl-CoA desaturase</topic><topic>Stearoyl-CoA Desaturase - genetics</topic><topic>Stearoyl-CoA Desaturase - metabolism</topic><topic>Studies</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Synthesis</topic><topic>Type 2 diabetes</topic><topic>University graduates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsui, Hiroki</creatorcontrib><creatorcontrib>Yokoyama, Tomoyuki</creatorcontrib><creatorcontrib>Sekiguchi, Kenichi</creatorcontrib><creatorcontrib>Iijima, Daisuke</creatorcontrib><creatorcontrib>Sunaga, Hiroaki</creatorcontrib><creatorcontrib>Maniwa, Moeno</creatorcontrib><creatorcontrib>Ueno, Manabu</creatorcontrib><creatorcontrib>Iso, Tatsuya</creatorcontrib><creatorcontrib>Arai, Masashi</creatorcontrib><creatorcontrib>Kurabayashi, Masahiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsui, Hiroki</au><au>Yokoyama, Tomoyuki</au><au>Sekiguchi, Kenichi</au><au>Iijima, Daisuke</au><au>Sunaga, Hiroaki</au><au>Maniwa, Moeno</au><au>Ueno, Manabu</au><au>Iso, Tatsuya</au><au>Arai, Masashi</au><au>Kurabayashi, Masahiko</au><au>Stadler, Krisztian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-03-08</date><risdate>2012</risdate><volume>7</volume><issue>3</issue><spage>e33283</spage><pages>e33283-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22413010</pmid><doi>10.1371/journal.pone.0033283</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-03, Vol.7 (3), p.e33283
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1323999873
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Accumulation
Adenoviruses
Adipocytes
Animals
Apoptosis
Apoptosis - drug effects
Atherosclerosis
Biology
Blood Glucose - metabolism
Cardiomyocytes
Cardiomyopathy
Caspase
Caspase-3
Catabolism
Cell death
Cells, Cultured
Ceramide
Coenzyme A
Dehydrogenases
Desaturase
Diabetes
Diet
Diet - adverse effects
Diglycerides
Energy metabolism
Enzymes
Fatty acids
Fatty Acids - pharmacology
Fatty Acids, Nonesterified - metabolism
Gene expression
Gene Expression - drug effects
Genes
Glucose
Health sciences
Heart
Heart diseases
Humans
Hydrogen Peroxide - pharmacology
Hypertension
Insulin
Insulin - metabolism
Insulin resistance
Kinases
Laboratories
Ligands
Lipid Metabolism
Lipids
Male
Medicine
Metabolic disorders
Metabolic syndrome
Metabolism
Mitochondria
Monounsaturated fatty acids
Myocardium
Myocardium - metabolism
Myocytes
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Neonates
Obesity
Obesity, Abdominal - etiology
Oxidants - pharmacology
Oxidation
Oxidation-Reduction
Oxygen
Palmitic acid
Physiological aspects
Rats
Rats, Wistar
Reactive oxygen species
Reactive Oxygen Species - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Saturated fatty acids
siRNA
Stearoyl-CoA desaturase
Stearoyl-CoA Desaturase - genetics
Stearoyl-CoA Desaturase - metabolism
Studies
Sucrose
Sugar
Synthesis
Type 2 diabetes
University graduates
title Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stearoyl-CoA%20desaturase-1%20(SCD1)%20augments%20saturated%20fatty%20acid-induced%20lipid%20accumulation%20and%20inhibits%20apoptosis%20in%20cardiac%20myocytes&rft.jtitle=PloS%20one&rft.au=Matsui,%20Hiroki&rft.date=2012-03-08&rft.volume=7&rft.issue=3&rft.spage=e33283&rft.pages=e33283-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0033283&rft_dat=%3Cgale_plos_%3EA477145367%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c658t-464057eb0629e9161678287d6b4a1a5436337b7092be53e091b9238b61e6c5f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323999873&rft_id=info:pmid/22413010&rft_galeid=A477145367&rfr_iscdi=true