Loading…

The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids

Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 4...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-03, Vol.7 (3), p.e33746-e33746
Main Authors: Hrdá, Štěpánka, Fousek, Jan, Szabová, Jana, Hampl, Vladimír, Hampl, 5th, Vladimír, Vlček, Čestmír
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3
cites cdi_FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3
container_end_page e33746
container_issue 3
container_start_page e33746
container_title PloS one
container_volume 7
creator Hrdá, Štěpánka
Fousek, Jan
Szabová, Jana
Hampl, Vladimír
Hampl, 5th, Vladimír
Vlček, Čestmír
description Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.
doi_str_mv 10.1371/journal.pone.0033746
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324436192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477056647</galeid><doaj_id>oai_doaj_org_article_2570a9ab6e1f49f69f1c8c5cb19c4ab3</doaj_id><sourcerecordid>A477056647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguLFjEnTps2NsCyrDiws6OptSNOTToY2mU3S_fj3pjudZSp7IblIyHneNznncJLkLUZLTEr8ZWMHZ0S33FoDS4QIKXP6LDnGjGQLmiHy_OB8lLzyfoNQQSpKXyZHWZbnVUbZcXJ3tYZ02wkfdJO2YGwPqVXp-RAcbIOGrhPp1tkb3YBPRXqrTWNvU22CTcOodFaC96PEg7SmEe4-hcj4-77W1uuH0N5fmxSGtgOjG_86eaFE5-HNtJ8kv7-dX539WFxcfl-dnV4sJGU4LFRZVzgvhCpQLaHJkSoyVDSqxlQyVFcSsiaTiGW5LCpU40bSUpYEy5JmQIUiJ8n7ne-2s55PRfMck1gCQjHLIrHaEY0VG751uo9JcCs0f7iwruXCBS074FlRIsFETQGrnCnKFJaVLGSNmcxFTaLX1-m1oe6hkWCCE93MdB4xes1be8MJQRVjo8GnycDZ6wF84L32cmyDATt4zvKKxTbikfzwD_l0chPVivh_bZSNz8rRk5_mZYkKSvMyUssnqLga6HVsKygd72eCzzNBZALchVYM3vPVr5__z17-mbMfD9g1iC6sve2GoK3xczDfgdJZ7x2oxxpjxMf52FeDj_PBp_mIsneH_XkU7QeC_AUlow1H</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324436192</pqid></control><display><type>article</type><title>The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids</title><source>PubMed</source><source>ProQuest - Publicly Available Content Database</source><creator>Hrdá, Štěpánka ; Fousek, Jan ; Szabová, Jana ; Hampl, Vladimír ; Hampl, 5th, Vladimír ; Vlček, Čestmír</creator><contributor>Badger, Jonathan H.</contributor><creatorcontrib>Hrdá, Štěpánka ; Fousek, Jan ; Szabová, Jana ; Hampl, Vladimír ; Hampl, 5th, Vladimír ; Vlček, Čestmír ; Badger, Jonathan H.</creatorcontrib><description>Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0033746</identifier><identifier>PMID: 22448269</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algae ; Analysis ; Bifurcations ; Bioinformatics ; Biological Evolution ; Biology ; Chloroplasts ; Conservation ; Deoxyribonucleic acid ; DNA ; Euglena ; Euglena gracilis ; Euglenida - genetics ; Euglenozoa Infections - genetics ; Euglenozoa Infections - pathology ; Eutreptia ; Eutreptiella ; Evolution ; Feeding behavior ; Gene order ; Gene sequencing ; Genes ; Genome, Plastid ; Genomes ; Genomics ; Hypotheses ; Nuclei ; Parasitology ; Peranema ; Photosynthesis ; Phylogenetics ; Phylogeny ; Plastids ; Plastids - genetics ; Proteins ; Pyramimonas ; Science ; Symbiosis - physiology</subject><ispartof>PloS one, 2012-03, Vol.7 (3), p.e33746-e33746</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Hrdá et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Hrdá et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3</citedby><cites>FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1324436192/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1324436192?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22448269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Badger, Jonathan H.</contributor><creatorcontrib>Hrdá, Štěpánka</creatorcontrib><creatorcontrib>Fousek, Jan</creatorcontrib><creatorcontrib>Szabová, Jana</creatorcontrib><creatorcontrib>Hampl, Vladimír</creatorcontrib><creatorcontrib>Hampl, 5th, Vladimír</creatorcontrib><creatorcontrib>Vlček, Čestmír</creatorcontrib><title>The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.</description><subject>Algae</subject><subject>Analysis</subject><subject>Bifurcations</subject><subject>Bioinformatics</subject><subject>Biological Evolution</subject><subject>Biology</subject><subject>Chloroplasts</subject><subject>Conservation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Euglena</subject><subject>Euglena gracilis</subject><subject>Euglenida - genetics</subject><subject>Euglenozoa Infections - genetics</subject><subject>Euglenozoa Infections - pathology</subject><subject>Eutreptia</subject><subject>Eutreptiella</subject><subject>Evolution</subject><subject>Feeding behavior</subject><subject>Gene order</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genome, Plastid</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hypotheses</subject><subject>Nuclei</subject><subject>Parasitology</subject><subject>Peranema</subject><subject>Photosynthesis</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>Proteins</subject><subject>Pyramimonas</subject><subject>Science</subject><subject>Symbiosis - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguLFjEnTps2NsCyrDiws6OptSNOTToY2mU3S_fj3pjudZSp7IblIyHneNznncJLkLUZLTEr8ZWMHZ0S33FoDS4QIKXP6LDnGjGQLmiHy_OB8lLzyfoNQQSpKXyZHWZbnVUbZcXJ3tYZ02wkfdJO2YGwPqVXp-RAcbIOGrhPp1tkb3YBPRXqrTWNvU22CTcOodFaC96PEg7SmEe4-hcj4-77W1uuH0N5fmxSGtgOjG_86eaFE5-HNtJ8kv7-dX539WFxcfl-dnV4sJGU4LFRZVzgvhCpQLaHJkSoyVDSqxlQyVFcSsiaTiGW5LCpU40bSUpYEy5JmQIUiJ8n7ne-2s55PRfMck1gCQjHLIrHaEY0VG751uo9JcCs0f7iwruXCBS074FlRIsFETQGrnCnKFJaVLGSNmcxFTaLX1-m1oe6hkWCCE93MdB4xes1be8MJQRVjo8GnycDZ6wF84L32cmyDATt4zvKKxTbikfzwD_l0chPVivh_bZSNz8rRk5_mZYkKSvMyUssnqLga6HVsKygd72eCzzNBZALchVYM3vPVr5__z17-mbMfD9g1iC6sve2GoK3xczDfgdJZ7x2oxxpjxMf52FeDj_PBp_mIsneH_XkU7QeC_AUlow1H</recordid><startdate>20120320</startdate><enddate>20120320</enddate><creator>Hrdá, Štěpánka</creator><creator>Fousek, Jan</creator><creator>Szabová, Jana</creator><creator>Hampl, Vladimír</creator><creator>Hampl, 5th, Vladimír</creator><creator>Vlček, Čestmír</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120320</creationdate><title>The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids</title><author>Hrdá, Štěpánka ; Fousek, Jan ; Szabová, Jana ; Hampl, Vladimír ; Hampl, 5th, Vladimír ; Vlček, Čestmír</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algae</topic><topic>Analysis</topic><topic>Bifurcations</topic><topic>Bioinformatics</topic><topic>Biological Evolution</topic><topic>Biology</topic><topic>Chloroplasts</topic><topic>Conservation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Euglena</topic><topic>Euglena gracilis</topic><topic>Euglenida - genetics</topic><topic>Euglenozoa Infections - genetics</topic><topic>Euglenozoa Infections - pathology</topic><topic>Eutreptia</topic><topic>Eutreptiella</topic><topic>Evolution</topic><topic>Feeding behavior</topic><topic>Gene order</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genome, Plastid</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hypotheses</topic><topic>Nuclei</topic><topic>Parasitology</topic><topic>Peranema</topic><topic>Photosynthesis</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>Proteins</topic><topic>Pyramimonas</topic><topic>Science</topic><topic>Symbiosis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hrdá, Štěpánka</creatorcontrib><creatorcontrib>Fousek, Jan</creatorcontrib><creatorcontrib>Szabová, Jana</creatorcontrib><creatorcontrib>Hampl, Vladimír</creatorcontrib><creatorcontrib>Hampl, 5th, Vladimír</creatorcontrib><creatorcontrib>Vlček, Čestmír</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hrdá, Štěpánka</au><au>Fousek, Jan</au><au>Szabová, Jana</au><au>Hampl, Vladimír</au><au>Hampl, 5th, Vladimír</au><au>Vlček, Čestmír</au><au>Badger, Jonathan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-03-20</date><risdate>2012</risdate><volume>7</volume><issue>3</issue><spage>e33746</spage><epage>e33746</epage><pages>e33746-e33746</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22448269</pmid><doi>10.1371/journal.pone.0033746</doi><tpages>e33746</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-03, Vol.7 (3), p.e33746-e33746
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1324436192
source PubMed; ProQuest - Publicly Available Content Database
subjects Algae
Analysis
Bifurcations
Bioinformatics
Biological Evolution
Biology
Chloroplasts
Conservation
Deoxyribonucleic acid
DNA
Euglena
Euglena gracilis
Euglenida - genetics
Euglenozoa Infections - genetics
Euglenozoa Infections - pathology
Eutreptia
Eutreptiella
Evolution
Feeding behavior
Gene order
Gene sequencing
Genes
Genome, Plastid
Genomes
Genomics
Hypotheses
Nuclei
Parasitology
Peranema
Photosynthesis
Phylogenetics
Phylogeny
Plastids
Plastids - genetics
Proteins
Pyramimonas
Science
Symbiosis - physiology
title The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20plastid%20genome%20of%20Eutreptiella%20provides%20a%20window%20into%20the%20process%20of%20secondary%20endosymbiosis%20of%20plastid%20in%20euglenids&rft.jtitle=PloS%20one&rft.au=Hrd%C3%A1,%20%C5%A0t%C4%9Bp%C3%A1nka&rft.date=2012-03-20&rft.volume=7&rft.issue=3&rft.spage=e33746&rft.epage=e33746&rft.pages=e33746-e33746&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0033746&rft_dat=%3Cgale_plos_%3EA477056647%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c691t-f7b8145af50bced40f5205dfb16c90b8ce2d2c0924c580b1dc67c731c762e6af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1324436192&rft_id=info:pmid/22448269&rft_galeid=A477056647&rfr_iscdi=true