Loading…

Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway

Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesi...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-04, Vol.7 (4), p.e35214-e35214
Main Authors: Petrie, James R, Vanhercke, Thomas, Shrestha, Pushkar, El Tahchy, Anna, White, Adam, Zhou, Xue-Rong, Liu, Qing, Mansour, Maged P, Nichols, Peter D, Singh, Surinder P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33
cites cdi_FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33
container_end_page e35214
container_issue 4
container_start_page e35214
container_title PloS one
container_volume 7
creator Petrie, James R
Vanhercke, Thomas
Shrestha, Pushkar
El Tahchy, Anna
White, Adam
Zhou, Xue-Rong
Liu, Qing
Mansour, Maged P
Nichols, Peter D
Singh, Surinder P
description Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.
doi_str_mv 10.1371/journal.pone.0035214
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1324573746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477082455</galeid><doaj_id>oai_doaj_org_article_26b2abe6180c466297ab3981dbe8b928</doaj_id><sourcerecordid>A477082455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLk0aeuDsCxeBhYW1strSNKkkyGT1CR1nW9v6swuU9kHyUOSk9_5n0t7iuI5BEuIa_hu48fguF0O3qklAJggWD0oTmGL0YIigB8enU-KJzFuACC4ofRxcYIQQZjU9LQYrpUMo0nG9SUvnbop4yhiCjypUvtQpmC43Nne7qQK3pZx59JaRRNL48rBcpfi-zJbyq13fkZOl6zjolaBR1UOPK1v-O5p8UhzG9Wzw35WfP_08dvFl8Xl1efVxfnlQlJQVwtF2wZy3NScdBxoDQSpBBFUEwqkpFKLSgnYYCG1bNtadK0CGGjaglbCRmJ8Vrzc6w7WR3ZoVmQQo4rUuK5oJlZ7ovN8w4ZgtjzsmOeG_TX40DMekpFWMUQF4kJR2ABZUYramgucE-yEakSLmqz14RBtFFvVSeVy6XYmOn9xZs16_4thjGpKpnTfHASC_zmqmNjWRKls7rDyY84bgBZiSMgU69U_6P3VHaie5wKM0z7HlZMoO6_qGjSZJJla3kPl1amtkfnP0ibbZw5vZw6ZSep36vkYI1t9vf5_9urHnH19xK4Vt2kdvR2T8S7OwWoPyuBjDErfNRkCNg3GbTfYNBjsMBjZ7cXxB7pzup0E_AeoLAsB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324573746</pqid></control><display><type>article</type><title>Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Petrie, James R ; Vanhercke, Thomas ; Shrestha, Pushkar ; El Tahchy, Anna ; White, Adam ; Zhou, Xue-Rong ; Liu, Qing ; Mansour, Maged P ; Nichols, Peter D ; Singh, Surinder P</creator><contributor>Bonaventure, Gustavo</contributor><creatorcontrib>Petrie, James R ; Vanhercke, Thomas ; Shrestha, Pushkar ; El Tahchy, Anna ; White, Adam ; Zhou, Xue-Rong ; Liu, Qing ; Mansour, Maged P ; Nichols, Peter D ; Singh, Surinder P ; Bonaventure, Gustavo</creatorcontrib><description>Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0035214</identifier><identifier>PMID: 22523576</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acylation ; Acyltransferase ; Acyltransferases - metabolism ; Agriculture ; Animals ; Arabidopsis ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Baking yeast ; Bioaccumulation ; Biology ; Biosynthesis ; Carthamus tinctorius ; Diacylglycerol O-acyltransferase ; Diacylglycerol O-Acyltransferase - metabolism ; Diglycerides ; Enzymes ; Fatty acids ; Food ; Futures ; Genes ; Glycerol ; Glycerol-3-phosphate ; Glycerol-3-Phosphate O-Acyltransferase - metabolism ; Glycerophosphates - metabolism ; Hyperglycemia ; Insulin resistance ; Intestine ; Kinases ; Lipids ; Membrane lipids ; Metabolic Networks and Pathways ; Mice ; Monoglycerides - metabolism ; Nicotiana - enzymology ; Phosphatase ; Phosphates ; Plants (botany) ; Rodents ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Seeds ; Tissues ; Transferases ; Trends ; Triglycerides ; Triglycerides - biosynthesis</subject><ispartof>PloS one, 2012-04, Vol.7 (4), p.e35214-e35214</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Petrie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Petrie et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33</citedby><cites>FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1324573746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1324573746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22523576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bonaventure, Gustavo</contributor><creatorcontrib>Petrie, James R</creatorcontrib><creatorcontrib>Vanhercke, Thomas</creatorcontrib><creatorcontrib>Shrestha, Pushkar</creatorcontrib><creatorcontrib>El Tahchy, Anna</creatorcontrib><creatorcontrib>White, Adam</creatorcontrib><creatorcontrib>Zhou, Xue-Rong</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Mansour, Maged P</creatorcontrib><creatorcontrib>Nichols, Peter D</creatorcontrib><creatorcontrib>Singh, Surinder P</creatorcontrib><title>Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.</description><subject>Acylation</subject><subject>Acyltransferase</subject><subject>Acyltransferases - metabolism</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Arabidopsis</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Baking yeast</subject><subject>Bioaccumulation</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Carthamus tinctorius</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - metabolism</subject><subject>Diglycerides</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Food</subject><subject>Futures</subject><subject>Genes</subject><subject>Glycerol</subject><subject>Glycerol-3-phosphate</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - metabolism</subject><subject>Glycerophosphates - metabolism</subject><subject>Hyperglycemia</subject><subject>Insulin resistance</subject><subject>Intestine</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Membrane lipids</subject><subject>Metabolic Networks and Pathways</subject><subject>Mice</subject><subject>Monoglycerides - metabolism</subject><subject>Nicotiana - enzymology</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>Plants (botany)</subject><subject>Rodents</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Seeds</subject><subject>Tissues</subject><subject>Transferases</subject><subject>Trends</subject><subject>Triglycerides</subject><subject>Triglycerides - biosynthesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLgujDjLk0aeuDsCxeBhYW1strSNKkkyGT1CR1nW9v6swuU9kHyUOSk9_5n0t7iuI5BEuIa_hu48fguF0O3qklAJggWD0oTmGL0YIigB8enU-KJzFuACC4ofRxcYIQQZjU9LQYrpUMo0nG9SUvnbop4yhiCjypUvtQpmC43Nne7qQK3pZx59JaRRNL48rBcpfi-zJbyq13fkZOl6zjolaBR1UOPK1v-O5p8UhzG9Wzw35WfP_08dvFl8Xl1efVxfnlQlJQVwtF2wZy3NScdBxoDQSpBBFUEwqkpFKLSgnYYCG1bNtadK0CGGjaglbCRmJ8Vrzc6w7WR3ZoVmQQo4rUuK5oJlZ7ovN8w4ZgtjzsmOeG_TX40DMekpFWMUQF4kJR2ABZUYramgucE-yEakSLmqz14RBtFFvVSeVy6XYmOn9xZs16_4thjGpKpnTfHASC_zmqmNjWRKls7rDyY84bgBZiSMgU69U_6P3VHaie5wKM0z7HlZMoO6_qGjSZJJla3kPl1amtkfnP0ibbZw5vZw6ZSep36vkYI1t9vf5_9urHnH19xK4Vt2kdvR2T8S7OwWoPyuBjDErfNRkCNg3GbTfYNBjsMBjZ7cXxB7pzup0E_AeoLAsB</recordid><startdate>20120416</startdate><enddate>20120416</enddate><creator>Petrie, James R</creator><creator>Vanhercke, Thomas</creator><creator>Shrestha, Pushkar</creator><creator>El Tahchy, Anna</creator><creator>White, Adam</creator><creator>Zhou, Xue-Rong</creator><creator>Liu, Qing</creator><creator>Mansour, Maged P</creator><creator>Nichols, Peter D</creator><creator>Singh, Surinder P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120416</creationdate><title>Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway</title><author>Petrie, James R ; Vanhercke, Thomas ; Shrestha, Pushkar ; El Tahchy, Anna ; White, Adam ; Zhou, Xue-Rong ; Liu, Qing ; Mansour, Maged P ; Nichols, Peter D ; Singh, Surinder P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acylation</topic><topic>Acyltransferase</topic><topic>Acyltransferases - metabolism</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Arabidopsis</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Baking yeast</topic><topic>Bioaccumulation</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Carthamus tinctorius</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - metabolism</topic><topic>Diglycerides</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Food</topic><topic>Futures</topic><topic>Genes</topic><topic>Glycerol</topic><topic>Glycerol-3-phosphate</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - metabolism</topic><topic>Glycerophosphates - metabolism</topic><topic>Hyperglycemia</topic><topic>Insulin resistance</topic><topic>Intestine</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Membrane lipids</topic><topic>Metabolic Networks and Pathways</topic><topic>Mice</topic><topic>Monoglycerides - metabolism</topic><topic>Nicotiana - enzymology</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>Plants (botany)</topic><topic>Rodents</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Seeds</topic><topic>Tissues</topic><topic>Transferases</topic><topic>Trends</topic><topic>Triglycerides</topic><topic>Triglycerides - biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrie, James R</creatorcontrib><creatorcontrib>Vanhercke, Thomas</creatorcontrib><creatorcontrib>Shrestha, Pushkar</creatorcontrib><creatorcontrib>El Tahchy, Anna</creatorcontrib><creatorcontrib>White, Adam</creatorcontrib><creatorcontrib>Zhou, Xue-Rong</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Mansour, Maged P</creatorcontrib><creatorcontrib>Nichols, Peter D</creatorcontrib><creatorcontrib>Singh, Surinder P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrie, James R</au><au>Vanhercke, Thomas</au><au>Shrestha, Pushkar</au><au>El Tahchy, Anna</au><au>White, Adam</au><au>Zhou, Xue-Rong</au><au>Liu, Qing</au><au>Mansour, Maged P</au><au>Nichols, Peter D</au><au>Singh, Surinder P</au><au>Bonaventure, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-04-16</date><risdate>2012</risdate><volume>7</volume><issue>4</issue><spage>e35214</spage><epage>e35214</epage><pages>e35214-e35214</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22523576</pmid><doi>10.1371/journal.pone.0035214</doi><tpages>e35214</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-04, Vol.7 (4), p.e35214-e35214
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1324573746
source Publicly Available Content Database; PubMed Central
subjects Acylation
Acyltransferase
Acyltransferases - metabolism
Agriculture
Animals
Arabidopsis
Arabidopsis - metabolism
Arabidopsis thaliana
Baking yeast
Bioaccumulation
Biology
Biosynthesis
Carthamus tinctorius
Diacylglycerol O-acyltransferase
Diacylglycerol O-Acyltransferase - metabolism
Diglycerides
Enzymes
Fatty acids
Food
Futures
Genes
Glycerol
Glycerol-3-phosphate
Glycerol-3-Phosphate O-Acyltransferase - metabolism
Glycerophosphates - metabolism
Hyperglycemia
Insulin resistance
Intestine
Kinases
Lipids
Membrane lipids
Metabolic Networks and Pathways
Mice
Monoglycerides - metabolism
Nicotiana - enzymology
Phosphatase
Phosphates
Plants (botany)
Rodents
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Seeds
Tissues
Transferases
Trends
Triglycerides
Triglycerides - biosynthesis
title Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recruiting%20a%20new%20substrate%20for%20triacylglycerol%20synthesis%20in%20plants:%20the%20monoacylglycerol%20acyltransferase%20pathway&rft.jtitle=PloS%20one&rft.au=Petrie,%20James%20R&rft.date=2012-04-16&rft.volume=7&rft.issue=4&rft.spage=e35214&rft.epage=e35214&rft.pages=e35214-e35214&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0035214&rft_dat=%3Cgale_plos_%3EA477082455%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6074-e6981a387a5da0ff0b54b5b6f560cc6cfb4eb183bcfc997bd9e030f6909c18c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1324573746&rft_id=info:pmid/22523576&rft_galeid=A477082455&rfr_iscdi=true