Loading…

Traffic-related air pollution and DNA damage: a longitudinal study in Taiwanese traffic conductors

There is accumulating epidemiologic evidence that exposure to traffic-related air pollutants, including particulate matter (PM) and polyaromatic hydro carbons (PAHs), plays a role in etiology and prognosis of a large scale of illnesses, although the role of specific causal agents and underlying mech...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-05, Vol.7 (5), p.e37412
Main Authors: Huang, Han-Bin, Lai, Ching-Huang, Chen, Guan-Wen, Lin, Yong-Yang, Jaakkola, Jouni J K, Liou, Saou-Hsing, Wang, Shu-Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is accumulating epidemiologic evidence that exposure to traffic-related air pollutants, including particulate matter (PM) and polyaromatic hydro carbons (PAHs), plays a role in etiology and prognosis of a large scale of illnesses, although the role of specific causal agents and underlying mechanisms for different health outcomes remains unknown. Our general objective was to assess the relations between personal exposure to traffic exhausts, in particular ambient PM(2.5) and PAHs, and the occurrence of DNA strand breaks by applying personal monitoring of PM and biomarkers of exposure (urinary 1-hydroxypyrene-glucuronide, 1-OHPG) and effect (urinary 8-hydroxydeoxyguanosine, 8-OHdG and DNA strand breaks). We recruited 91 traffic conductors and 53 indoor office workers between May 2009 and June 2011 in Taipei City, Taiwan. We used PM(2.5) personal samplers to collect breathing-zone particulate PAHs samples. Spot urine and blood samples after work shift of 2 consecutive days were analyzed for 1-OHPG, 8-OHdG and DNA strand breaks, respectively. Statistical methods included linear regression and mixed models. Urinary 8-OHdG levels and the occurrence of DNA strand breaks in traffic conductors significantly exceeded those in indoor office workers in mixed models. Particulate PAHs levels showed a positive association with urinary 1-OHPG in the regression model (β = 0.056, p = 0.01). Urinary 1-OHPG levels were significantly associated with urinary 8-OHdG levels in the mixed model (β = 0.101, p = 0.023). Our results provide evidence that exposure to fine particulates causes DNA damage. Further, particulate PAHs could be biologically active constituents of PM(2.5) with reference to the induction of oxidative DNA damages.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0037412