Loading…
CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension
Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatme...
Saved in:
Published in: | PloS one 2012-06, Vol.7 (6), p.e37873 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23 |
---|---|
cites | cdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23 |
container_end_page | |
container_issue | 6 |
container_start_page | e37873 |
container_title | PloS one |
container_volume | 7 |
creator | Denoyer, Alexandre Godefroy, David Célérier, Isabelle Frugier, Julie Degardin, Julie Harrison, Jeffrey K Brignole-Baudouin, Francoise Picaud, Serge Baleux, Francoise Sahel, José A Rostène, William Baudouin, Christophe |
description | Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration. |
doi_str_mv | 10.1371/journal.pone.0037873 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325002901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477116672</galeid><doaj_id>oai_doaj_org_article_6f814240dda145689d64a522f3a1b13c</doaj_id><sourcerecordid>A477116672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</originalsourceid><addsrcrecordid>eNptUl1r2zAUNWNj7br9g7EZ9tI-OJN0Zcl-GYRsXQuBwT5gb0KxpETBllLJDvQn7F9PbtzSlGKQxfU55557fLPsPUYzDBx_3vohONnOdt7pGULAKw4vslNcAykYQfDy0f0kexPjFqESKsZeZyeEMF7Smp1m_xZ_Fz8hl66Xa-9s7HJv8l9fLwt8XhaMX-RBx96nI--DXOlmaGXIzeCa3nqXaCrfBb3Xro8J2dtkKHd6CF7ptXY6yDuYTcg83fMu1duxgz8IbW53OvTaxYR6m70yso363fQ-y_5cfvu9uCqWP75fL-bLomEM9YVRlQEOqKIrJGtZYo0qrRrCNRBOeFljbqgCYkrKKHC-kgC6rqSpMaFKEzjLPh50d62PYkoxCgykRIjUCCfE9QGhvNyKXbCdDLfCSyvuCj6shQy9bVotmKkwJRQpJTEtWVUrRmVJiAGJVxiapPVl6jasuuQzJRVkeyR6_MXZjVj7vQBgrGYsCVwcBDZPaFfzpRhrCNeUshr2o_HzqVnwN0P6caKzsdFtK532Q5oRkQoBwuWYwqcn0OeTmFBrmYa1zvjksRlFxZxyjjFjfNSaPYNKj9KdbdJ6GpvqRwR6IDTBxxi0eRgMIzEu970ZMS63mJY70T48zvKBdL_N8B_t3PUr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325002901</pqid></control><display><type>article</type><title>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Denoyer, Alexandre ; Godefroy, David ; Célérier, Isabelle ; Frugier, Julie ; Degardin, Julie ; Harrison, Jeffrey K ; Brignole-Baudouin, Francoise ; Picaud, Serge ; Baleux, Francoise ; Sahel, José A ; Rostène, William ; Baudouin, Christophe</creator><contributor>Vavvas, Demetrios</contributor><creatorcontrib>Denoyer, Alexandre ; Godefroy, David ; Célérier, Isabelle ; Frugier, Julie ; Degardin, Julie ; Harrison, Jeffrey K ; Brignole-Baudouin, Francoise ; Picaud, Serge ; Baleux, Francoise ; Sahel, José A ; Rostène, William ; Baudouin, Christophe ; Vavvas, Demetrios</creatorcontrib><description>Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0037873</identifier><identifier>PMID: 22675496</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antagonism ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Biology ; Blindness ; Cadmium ; Caspase ; Caspase 3 ; Caspase 3 - metabolism ; Cell Line ; Chemokine CXCL12 ; Chemokine CXCL12 - pharmacology ; Chemokines ; CXCL12 protein ; CXCR3 protein ; CXCR4 protein ; Cytoprotection ; Cytoprotection - drug effects ; Data processing ; Degeneration ; Disease Models, Animal ; Drug therapy ; Enzyme Activation ; Enzyme Activation - drug effects ; Extracellular matrix ; Glaucoma ; Glaucoma - complications ; Glaucoma - metabolism ; Glaucoma - pathology ; Glaucoma - physiopathology ; Health aspects ; Humans ; Hypertension ; Infections ; Intraocular Pressure ; Intraocular Pressure - drug effects ; Life Sciences ; Male ; Medicine ; Metallography ; Neurodegeneration ; Neuropathy ; Ocular Hypertension ; Ocular Hypertension - complications ; Ocular Hypertension - physiopathology ; Pathology ; Peptides ; Proteases ; Proteolysis ; Rats ; Rats, Long-Evans ; Receptors ; Receptors, CXCR3 ; Receptors, CXCR3 - antagonists & inhibitors ; Receptors, CXCR3 - metabolism ; Receptors, CXCR4 ; Receptors, CXCR4 - metabolism ; Restoration ; Retina ; Retinal Degeneration ; Retinal Degeneration - complications ; Retinal Degeneration - physiopathology ; Retinal Degeneration - prevention & control ; Rodents ; SDF-1 protein ; Stress, Physiological ; Stress, Physiological - drug effects ; Trabecular Meshwork ; Trabecular Meshwork - drug effects ; Trabecular Meshwork - pathology ; Trabecular Meshwork - physiopathology ; Transforming growth factor- beta ; Transforming growth factors ; Tumor necrosis factor- alpha ; Tumor necrosis factor-α ; Ultrasonic imaging ; Vision, Ocular ; Vision, Ocular - drug effects ; Visual effects ; Visual perception</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e37873</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Denoyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Denoyer et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</citedby><cites>FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</cites><orcidid>0000-0002-2006-5384 ; 0000-0003-4926-1060 ; 0000-0003-1743-6698 ; 0000-0003-4706-2711 ; 0000-0002-0548-5145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1325002901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1325002901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22675496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01944693$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Vavvas, Demetrios</contributor><creatorcontrib>Denoyer, Alexandre</creatorcontrib><creatorcontrib>Godefroy, David</creatorcontrib><creatorcontrib>Célérier, Isabelle</creatorcontrib><creatorcontrib>Frugier, Julie</creatorcontrib><creatorcontrib>Degardin, Julie</creatorcontrib><creatorcontrib>Harrison, Jeffrey K</creatorcontrib><creatorcontrib>Brignole-Baudouin, Francoise</creatorcontrib><creatorcontrib>Picaud, Serge</creatorcontrib><creatorcontrib>Baleux, Francoise</creatorcontrib><creatorcontrib>Sahel, José A</creatorcontrib><creatorcontrib>Rostène, William</creatorcontrib><creatorcontrib>Baudouin, Christophe</creatorcontrib><title>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.</description><subject>Animals</subject><subject>Antagonism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Biology</subject><subject>Blindness</subject><subject>Cadmium</subject><subject>Caspase</subject><subject>Caspase 3</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Line</subject><subject>Chemokine CXCL12</subject><subject>Chemokine CXCL12 - pharmacology</subject><subject>Chemokines</subject><subject>CXCL12 protein</subject><subject>CXCR3 protein</subject><subject>CXCR4 protein</subject><subject>Cytoprotection</subject><subject>Cytoprotection - drug effects</subject><subject>Data processing</subject><subject>Degeneration</subject><subject>Disease Models, Animal</subject><subject>Drug therapy</subject><subject>Enzyme Activation</subject><subject>Enzyme Activation - drug effects</subject><subject>Extracellular matrix</subject><subject>Glaucoma</subject><subject>Glaucoma - complications</subject><subject>Glaucoma - metabolism</subject><subject>Glaucoma - pathology</subject><subject>Glaucoma - physiopathology</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Infections</subject><subject>Intraocular Pressure</subject><subject>Intraocular Pressure - drug effects</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Metallography</subject><subject>Neurodegeneration</subject><subject>Neuropathy</subject><subject>Ocular Hypertension</subject><subject>Ocular Hypertension - complications</subject><subject>Ocular Hypertension - physiopathology</subject><subject>Pathology</subject><subject>Peptides</subject><subject>Proteases</subject><subject>Proteolysis</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Receptors</subject><subject>Receptors, CXCR3</subject><subject>Receptors, CXCR3 - antagonists & inhibitors</subject><subject>Receptors, CXCR3 - metabolism</subject><subject>Receptors, CXCR4</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>Restoration</subject><subject>Retina</subject><subject>Retinal Degeneration</subject><subject>Retinal Degeneration - complications</subject><subject>Retinal Degeneration - physiopathology</subject><subject>Retinal Degeneration - prevention & control</subject><subject>Rodents</subject><subject>SDF-1 protein</subject><subject>Stress, Physiological</subject><subject>Stress, Physiological - drug effects</subject><subject>Trabecular Meshwork</subject><subject>Trabecular Meshwork - drug effects</subject><subject>Trabecular Meshwork - pathology</subject><subject>Trabecular Meshwork - physiopathology</subject><subject>Transforming growth factor- beta</subject><subject>Transforming growth factors</subject><subject>Tumor necrosis factor- alpha</subject><subject>Tumor necrosis factor-α</subject><subject>Ultrasonic imaging</subject><subject>Vision, Ocular</subject><subject>Vision, Ocular - drug effects</subject><subject>Visual effects</subject><subject>Visual perception</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1r2zAUNWNj7br9g7EZ9tI-OJN0Zcl-GYRsXQuBwT5gb0KxpETBllLJDvQn7F9PbtzSlGKQxfU55557fLPsPUYzDBx_3vohONnOdt7pGULAKw4vslNcAykYQfDy0f0kexPjFqESKsZeZyeEMF7Smp1m_xZ_Fz8hl66Xa-9s7HJv8l9fLwt8XhaMX-RBx96nI--DXOlmaGXIzeCa3nqXaCrfBb3Xro8J2dtkKHd6CF7ptXY6yDuYTcg83fMu1duxgz8IbW53OvTaxYR6m70yso363fQ-y_5cfvu9uCqWP75fL-bLomEM9YVRlQEOqKIrJGtZYo0qrRrCNRBOeFljbqgCYkrKKHC-kgC6rqSpMaFKEzjLPh50d62PYkoxCgykRIjUCCfE9QGhvNyKXbCdDLfCSyvuCj6shQy9bVotmKkwJRQpJTEtWVUrRmVJiAGJVxiapPVl6jasuuQzJRVkeyR6_MXZjVj7vQBgrGYsCVwcBDZPaFfzpRhrCNeUshr2o_HzqVnwN0P6caKzsdFtK532Q5oRkQoBwuWYwqcn0OeTmFBrmYa1zvjksRlFxZxyjjFjfNSaPYNKj9KdbdJ6GpvqRwR6IDTBxxi0eRgMIzEu970ZMS63mJY70T48zvKBdL_N8B_t3PUr</recordid><startdate>20120604</startdate><enddate>20120604</enddate><creator>Denoyer, Alexandre</creator><creator>Godefroy, David</creator><creator>Célérier, Isabelle</creator><creator>Frugier, Julie</creator><creator>Degardin, Julie</creator><creator>Harrison, Jeffrey K</creator><creator>Brignole-Baudouin, Francoise</creator><creator>Picaud, Serge</creator><creator>Baleux, Francoise</creator><creator>Sahel, José A</creator><creator>Rostène, William</creator><creator>Baudouin, Christophe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7TK</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2006-5384</orcidid><orcidid>https://orcid.org/0000-0003-4926-1060</orcidid><orcidid>https://orcid.org/0000-0003-1743-6698</orcidid><orcidid>https://orcid.org/0000-0003-4706-2711</orcidid><orcidid>https://orcid.org/0000-0002-0548-5145</orcidid></search><sort><creationdate>20120604</creationdate><title>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</title><author>Denoyer, Alexandre ; Godefroy, David ; Célérier, Isabelle ; Frugier, Julie ; Degardin, Julie ; Harrison, Jeffrey K ; Brignole-Baudouin, Francoise ; Picaud, Serge ; Baleux, Francoise ; Sahel, José A ; Rostène, William ; Baudouin, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antagonism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Biology</topic><topic>Blindness</topic><topic>Cadmium</topic><topic>Caspase</topic><topic>Caspase 3</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Line</topic><topic>Chemokine CXCL12</topic><topic>Chemokine CXCL12 - pharmacology</topic><topic>Chemokines</topic><topic>CXCL12 protein</topic><topic>CXCR3 protein</topic><topic>CXCR4 protein</topic><topic>Cytoprotection</topic><topic>Cytoprotection - drug effects</topic><topic>Data processing</topic><topic>Degeneration</topic><topic>Disease Models, Animal</topic><topic>Drug therapy</topic><topic>Enzyme Activation</topic><topic>Enzyme Activation - drug effects</topic><topic>Extracellular matrix</topic><topic>Glaucoma</topic><topic>Glaucoma - complications</topic><topic>Glaucoma - metabolism</topic><topic>Glaucoma - pathology</topic><topic>Glaucoma - physiopathology</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Infections</topic><topic>Intraocular Pressure</topic><topic>Intraocular Pressure - drug effects</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Metallography</topic><topic>Neurodegeneration</topic><topic>Neuropathy</topic><topic>Ocular Hypertension</topic><topic>Ocular Hypertension - complications</topic><topic>Ocular Hypertension - physiopathology</topic><topic>Pathology</topic><topic>Peptides</topic><topic>Proteases</topic><topic>Proteolysis</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Receptors</topic><topic>Receptors, CXCR3</topic><topic>Receptors, CXCR3 - antagonists & inhibitors</topic><topic>Receptors, CXCR3 - metabolism</topic><topic>Receptors, CXCR4</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>Restoration</topic><topic>Retina</topic><topic>Retinal Degeneration</topic><topic>Retinal Degeneration - complications</topic><topic>Retinal Degeneration - physiopathology</topic><topic>Retinal Degeneration - prevention & control</topic><topic>Rodents</topic><topic>SDF-1 protein</topic><topic>Stress, Physiological</topic><topic>Stress, Physiological - drug effects</topic><topic>Trabecular Meshwork</topic><topic>Trabecular Meshwork - drug effects</topic><topic>Trabecular Meshwork - pathology</topic><topic>Trabecular Meshwork - physiopathology</topic><topic>Transforming growth factor- beta</topic><topic>Transforming growth factors</topic><topic>Tumor necrosis factor- alpha</topic><topic>Tumor necrosis factor-α</topic><topic>Ultrasonic imaging</topic><topic>Vision, Ocular</topic><topic>Vision, Ocular - drug effects</topic><topic>Visual effects</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denoyer, Alexandre</creatorcontrib><creatorcontrib>Godefroy, David</creatorcontrib><creatorcontrib>Célérier, Isabelle</creatorcontrib><creatorcontrib>Frugier, Julie</creatorcontrib><creatorcontrib>Degardin, Julie</creatorcontrib><creatorcontrib>Harrison, Jeffrey K</creatorcontrib><creatorcontrib>Brignole-Baudouin, Francoise</creatorcontrib><creatorcontrib>Picaud, Serge</creatorcontrib><creatorcontrib>Baleux, Francoise</creatorcontrib><creatorcontrib>Sahel, José A</creatorcontrib><creatorcontrib>Rostène, William</creatorcontrib><creatorcontrib>Baudouin, Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denoyer, Alexandre</au><au>Godefroy, David</au><au>Célérier, Isabelle</au><au>Frugier, Julie</au><au>Degardin, Julie</au><au>Harrison, Jeffrey K</au><au>Brignole-Baudouin, Francoise</au><au>Picaud, Serge</au><au>Baleux, Francoise</au><au>Sahel, José A</au><au>Rostène, William</au><au>Baudouin, Christophe</au><au>Vavvas, Demetrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-04</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e37873</spage><pages>e37873-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22675496</pmid><doi>10.1371/journal.pone.0037873</doi><orcidid>https://orcid.org/0000-0002-2006-5384</orcidid><orcidid>https://orcid.org/0000-0003-4926-1060</orcidid><orcidid>https://orcid.org/0000-0003-1743-6698</orcidid><orcidid>https://orcid.org/0000-0003-4706-2711</orcidid><orcidid>https://orcid.org/0000-0002-0548-5145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-06, Vol.7 (6), p.e37873 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325002901 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Antagonism Apoptosis Apoptosis - drug effects Autophagy Biology Blindness Cadmium Caspase Caspase 3 Caspase 3 - metabolism Cell Line Chemokine CXCL12 Chemokine CXCL12 - pharmacology Chemokines CXCL12 protein CXCR3 protein CXCR4 protein Cytoprotection Cytoprotection - drug effects Data processing Degeneration Disease Models, Animal Drug therapy Enzyme Activation Enzyme Activation - drug effects Extracellular matrix Glaucoma Glaucoma - complications Glaucoma - metabolism Glaucoma - pathology Glaucoma - physiopathology Health aspects Humans Hypertension Infections Intraocular Pressure Intraocular Pressure - drug effects Life Sciences Male Medicine Metallography Neurodegeneration Neuropathy Ocular Hypertension Ocular Hypertension - complications Ocular Hypertension - physiopathology Pathology Peptides Proteases Proteolysis Rats Rats, Long-Evans Receptors Receptors, CXCR3 Receptors, CXCR3 - antagonists & inhibitors Receptors, CXCR3 - metabolism Receptors, CXCR4 Receptors, CXCR4 - metabolism Restoration Retina Retinal Degeneration Retinal Degeneration - complications Retinal Degeneration - physiopathology Retinal Degeneration - prevention & control Rodents SDF-1 protein Stress, Physiological Stress, Physiological - drug effects Trabecular Meshwork Trabecular Meshwork - drug effects Trabecular Meshwork - pathology Trabecular Meshwork - physiopathology Transforming growth factor- beta Transforming growth factors Tumor necrosis factor- alpha Tumor necrosis factor-α Ultrasonic imaging Vision, Ocular Vision, Ocular - drug effects Visual effects Visual perception |
title | CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXCR3%20antagonism%20of%20SDF-1(5-67)%20restores%20trabecular%20function%20and%20prevents%20retinal%20neurodegeneration%20in%20a%20rat%20model%20of%20ocular%20hypertension&rft.jtitle=PloS%20one&rft.au=Denoyer,%20Alexandre&rft.date=2012-06-04&rft.volume=7&rft.issue=6&rft.spage=e37873&rft.pages=e37873-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0037873&rft_dat=%3Cgale_plos_%3EA477116672%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1325002901&rft_id=info:pmid/22675496&rft_galeid=A477116672&rfr_iscdi=true |