Loading…

CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension

Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatme...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-06, Vol.7 (6), p.e37873
Main Authors: Denoyer, Alexandre, Godefroy, David, Célérier, Isabelle, Frugier, Julie, Degardin, Julie, Harrison, Jeffrey K, Brignole-Baudouin, Francoise, Picaud, Serge, Baleux, Francoise, Sahel, José A, Rostène, William, Baudouin, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23
cites cdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23
container_end_page
container_issue 6
container_start_page e37873
container_title PloS one
container_volume 7
creator Denoyer, Alexandre
Godefroy, David
Célérier, Isabelle
Frugier, Julie
Degardin, Julie
Harrison, Jeffrey K
Brignole-Baudouin, Francoise
Picaud, Serge
Baleux, Francoise
Sahel, José A
Rostène, William
Baudouin, Christophe
description Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.
doi_str_mv 10.1371/journal.pone.0037873
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325002901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477116672</galeid><doaj_id>oai_doaj_org_article_6f814240dda145689d64a522f3a1b13c</doaj_id><sourcerecordid>A477116672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</originalsourceid><addsrcrecordid>eNptUl1r2zAUNWNj7br9g7EZ9tI-OJN0Zcl-GYRsXQuBwT5gb0KxpETBllLJDvQn7F9PbtzSlGKQxfU55557fLPsPUYzDBx_3vohONnOdt7pGULAKw4vslNcAykYQfDy0f0kexPjFqESKsZeZyeEMF7Smp1m_xZ_Fz8hl66Xa-9s7HJv8l9fLwt8XhaMX-RBx96nI--DXOlmaGXIzeCa3nqXaCrfBb3Xro8J2dtkKHd6CF7ptXY6yDuYTcg83fMu1duxgz8IbW53OvTaxYR6m70yso363fQ-y_5cfvu9uCqWP75fL-bLomEM9YVRlQEOqKIrJGtZYo0qrRrCNRBOeFljbqgCYkrKKHC-kgC6rqSpMaFKEzjLPh50d62PYkoxCgykRIjUCCfE9QGhvNyKXbCdDLfCSyvuCj6shQy9bVotmKkwJRQpJTEtWVUrRmVJiAGJVxiapPVl6jasuuQzJRVkeyR6_MXZjVj7vQBgrGYsCVwcBDZPaFfzpRhrCNeUshr2o_HzqVnwN0P6caKzsdFtK532Q5oRkQoBwuWYwqcn0OeTmFBrmYa1zvjksRlFxZxyjjFjfNSaPYNKj9KdbdJ6GpvqRwR6IDTBxxi0eRgMIzEu970ZMS63mJY70T48zvKBdL_N8B_t3PUr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325002901</pqid></control><display><type>article</type><title>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Denoyer, Alexandre ; Godefroy, David ; Célérier, Isabelle ; Frugier, Julie ; Degardin, Julie ; Harrison, Jeffrey K ; Brignole-Baudouin, Francoise ; Picaud, Serge ; Baleux, Francoise ; Sahel, José A ; Rostène, William ; Baudouin, Christophe</creator><contributor>Vavvas, Demetrios</contributor><creatorcontrib>Denoyer, Alexandre ; Godefroy, David ; Célérier, Isabelle ; Frugier, Julie ; Degardin, Julie ; Harrison, Jeffrey K ; Brignole-Baudouin, Francoise ; Picaud, Serge ; Baleux, Francoise ; Sahel, José A ; Rostène, William ; Baudouin, Christophe ; Vavvas, Demetrios</creatorcontrib><description>Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0037873</identifier><identifier>PMID: 22675496</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antagonism ; Apoptosis ; Apoptosis - drug effects ; Autophagy ; Biology ; Blindness ; Cadmium ; Caspase ; Caspase 3 ; Caspase 3 - metabolism ; Cell Line ; Chemokine CXCL12 ; Chemokine CXCL12 - pharmacology ; Chemokines ; CXCL12 protein ; CXCR3 protein ; CXCR4 protein ; Cytoprotection ; Cytoprotection - drug effects ; Data processing ; Degeneration ; Disease Models, Animal ; Drug therapy ; Enzyme Activation ; Enzyme Activation - drug effects ; Extracellular matrix ; Glaucoma ; Glaucoma - complications ; Glaucoma - metabolism ; Glaucoma - pathology ; Glaucoma - physiopathology ; Health aspects ; Humans ; Hypertension ; Infections ; Intraocular Pressure ; Intraocular Pressure - drug effects ; Life Sciences ; Male ; Medicine ; Metallography ; Neurodegeneration ; Neuropathy ; Ocular Hypertension ; Ocular Hypertension - complications ; Ocular Hypertension - physiopathology ; Pathology ; Peptides ; Proteases ; Proteolysis ; Rats ; Rats, Long-Evans ; Receptors ; Receptors, CXCR3 ; Receptors, CXCR3 - antagonists &amp; inhibitors ; Receptors, CXCR3 - metabolism ; Receptors, CXCR4 ; Receptors, CXCR4 - metabolism ; Restoration ; Retina ; Retinal Degeneration ; Retinal Degeneration - complications ; Retinal Degeneration - physiopathology ; Retinal Degeneration - prevention &amp; control ; Rodents ; SDF-1 protein ; Stress, Physiological ; Stress, Physiological - drug effects ; Trabecular Meshwork ; Trabecular Meshwork - drug effects ; Trabecular Meshwork - pathology ; Trabecular Meshwork - physiopathology ; Transforming growth factor- beta ; Transforming growth factors ; Tumor necrosis factor- alpha ; Tumor necrosis factor-α ; Ultrasonic imaging ; Vision, Ocular ; Vision, Ocular - drug effects ; Visual effects ; Visual perception</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e37873</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Denoyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Denoyer et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</citedby><cites>FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</cites><orcidid>0000-0002-2006-5384 ; 0000-0003-4926-1060 ; 0000-0003-1743-6698 ; 0000-0003-4706-2711 ; 0000-0002-0548-5145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1325002901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1325002901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22675496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01944693$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Vavvas, Demetrios</contributor><creatorcontrib>Denoyer, Alexandre</creatorcontrib><creatorcontrib>Godefroy, David</creatorcontrib><creatorcontrib>Célérier, Isabelle</creatorcontrib><creatorcontrib>Frugier, Julie</creatorcontrib><creatorcontrib>Degardin, Julie</creatorcontrib><creatorcontrib>Harrison, Jeffrey K</creatorcontrib><creatorcontrib>Brignole-Baudouin, Francoise</creatorcontrib><creatorcontrib>Picaud, Serge</creatorcontrib><creatorcontrib>Baleux, Francoise</creatorcontrib><creatorcontrib>Sahel, José A</creatorcontrib><creatorcontrib>Rostène, William</creatorcontrib><creatorcontrib>Baudouin, Christophe</creatorcontrib><title>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.</description><subject>Animals</subject><subject>Antagonism</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Autophagy</subject><subject>Biology</subject><subject>Blindness</subject><subject>Cadmium</subject><subject>Caspase</subject><subject>Caspase 3</subject><subject>Caspase 3 - metabolism</subject><subject>Cell Line</subject><subject>Chemokine CXCL12</subject><subject>Chemokine CXCL12 - pharmacology</subject><subject>Chemokines</subject><subject>CXCL12 protein</subject><subject>CXCR3 protein</subject><subject>CXCR4 protein</subject><subject>Cytoprotection</subject><subject>Cytoprotection - drug effects</subject><subject>Data processing</subject><subject>Degeneration</subject><subject>Disease Models, Animal</subject><subject>Drug therapy</subject><subject>Enzyme Activation</subject><subject>Enzyme Activation - drug effects</subject><subject>Extracellular matrix</subject><subject>Glaucoma</subject><subject>Glaucoma - complications</subject><subject>Glaucoma - metabolism</subject><subject>Glaucoma - pathology</subject><subject>Glaucoma - physiopathology</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Infections</subject><subject>Intraocular Pressure</subject><subject>Intraocular Pressure - drug effects</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medicine</subject><subject>Metallography</subject><subject>Neurodegeneration</subject><subject>Neuropathy</subject><subject>Ocular Hypertension</subject><subject>Ocular Hypertension - complications</subject><subject>Ocular Hypertension - physiopathology</subject><subject>Pathology</subject><subject>Peptides</subject><subject>Proteases</subject><subject>Proteolysis</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Receptors</subject><subject>Receptors, CXCR3</subject><subject>Receptors, CXCR3 - antagonists &amp; inhibitors</subject><subject>Receptors, CXCR3 - metabolism</subject><subject>Receptors, CXCR4</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>Restoration</subject><subject>Retina</subject><subject>Retinal Degeneration</subject><subject>Retinal Degeneration - complications</subject><subject>Retinal Degeneration - physiopathology</subject><subject>Retinal Degeneration - prevention &amp; control</subject><subject>Rodents</subject><subject>SDF-1 protein</subject><subject>Stress, Physiological</subject><subject>Stress, Physiological - drug effects</subject><subject>Trabecular Meshwork</subject><subject>Trabecular Meshwork - drug effects</subject><subject>Trabecular Meshwork - pathology</subject><subject>Trabecular Meshwork - physiopathology</subject><subject>Transforming growth factor- beta</subject><subject>Transforming growth factors</subject><subject>Tumor necrosis factor- alpha</subject><subject>Tumor necrosis factor-α</subject><subject>Ultrasonic imaging</subject><subject>Vision, Ocular</subject><subject>Vision, Ocular - drug effects</subject><subject>Visual effects</subject><subject>Visual perception</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1r2zAUNWNj7br9g7EZ9tI-OJN0Zcl-GYRsXQuBwT5gb0KxpETBllLJDvQn7F9PbtzSlGKQxfU55557fLPsPUYzDBx_3vohONnOdt7pGULAKw4vslNcAykYQfDy0f0kexPjFqESKsZeZyeEMF7Smp1m_xZ_Fz8hl66Xa-9s7HJv8l9fLwt8XhaMX-RBx96nI--DXOlmaGXIzeCa3nqXaCrfBb3Xro8J2dtkKHd6CF7ptXY6yDuYTcg83fMu1duxgz8IbW53OvTaxYR6m70yso363fQ-y_5cfvu9uCqWP75fL-bLomEM9YVRlQEOqKIrJGtZYo0qrRrCNRBOeFljbqgCYkrKKHC-kgC6rqSpMaFKEzjLPh50d62PYkoxCgykRIjUCCfE9QGhvNyKXbCdDLfCSyvuCj6shQy9bVotmKkwJRQpJTEtWVUrRmVJiAGJVxiapPVl6jasuuQzJRVkeyR6_MXZjVj7vQBgrGYsCVwcBDZPaFfzpRhrCNeUshr2o_HzqVnwN0P6caKzsdFtK532Q5oRkQoBwuWYwqcn0OeTmFBrmYa1zvjksRlFxZxyjjFjfNSaPYNKj9KdbdJ6GpvqRwR6IDTBxxi0eRgMIzEu970ZMS63mJY70T48zvKBdL_N8B_t3PUr</recordid><startdate>20120604</startdate><enddate>20120604</enddate><creator>Denoyer, Alexandre</creator><creator>Godefroy, David</creator><creator>Célérier, Isabelle</creator><creator>Frugier, Julie</creator><creator>Degardin, Julie</creator><creator>Harrison, Jeffrey K</creator><creator>Brignole-Baudouin, Francoise</creator><creator>Picaud, Serge</creator><creator>Baleux, Francoise</creator><creator>Sahel, José A</creator><creator>Rostène, William</creator><creator>Baudouin, Christophe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7TK</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2006-5384</orcidid><orcidid>https://orcid.org/0000-0003-4926-1060</orcidid><orcidid>https://orcid.org/0000-0003-1743-6698</orcidid><orcidid>https://orcid.org/0000-0003-4706-2711</orcidid><orcidid>https://orcid.org/0000-0002-0548-5145</orcidid></search><sort><creationdate>20120604</creationdate><title>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</title><author>Denoyer, Alexandre ; Godefroy, David ; Célérier, Isabelle ; Frugier, Julie ; Degardin, Julie ; Harrison, Jeffrey K ; Brignole-Baudouin, Francoise ; Picaud, Serge ; Baleux, Francoise ; Sahel, José A ; Rostène, William ; Baudouin, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antagonism</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Autophagy</topic><topic>Biology</topic><topic>Blindness</topic><topic>Cadmium</topic><topic>Caspase</topic><topic>Caspase 3</topic><topic>Caspase 3 - metabolism</topic><topic>Cell Line</topic><topic>Chemokine CXCL12</topic><topic>Chemokine CXCL12 - pharmacology</topic><topic>Chemokines</topic><topic>CXCL12 protein</topic><topic>CXCR3 protein</topic><topic>CXCR4 protein</topic><topic>Cytoprotection</topic><topic>Cytoprotection - drug effects</topic><topic>Data processing</topic><topic>Degeneration</topic><topic>Disease Models, Animal</topic><topic>Drug therapy</topic><topic>Enzyme Activation</topic><topic>Enzyme Activation - drug effects</topic><topic>Extracellular matrix</topic><topic>Glaucoma</topic><topic>Glaucoma - complications</topic><topic>Glaucoma - metabolism</topic><topic>Glaucoma - pathology</topic><topic>Glaucoma - physiopathology</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Infections</topic><topic>Intraocular Pressure</topic><topic>Intraocular Pressure - drug effects</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medicine</topic><topic>Metallography</topic><topic>Neurodegeneration</topic><topic>Neuropathy</topic><topic>Ocular Hypertension</topic><topic>Ocular Hypertension - complications</topic><topic>Ocular Hypertension - physiopathology</topic><topic>Pathology</topic><topic>Peptides</topic><topic>Proteases</topic><topic>Proteolysis</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Receptors</topic><topic>Receptors, CXCR3</topic><topic>Receptors, CXCR3 - antagonists &amp; inhibitors</topic><topic>Receptors, CXCR3 - metabolism</topic><topic>Receptors, CXCR4</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>Restoration</topic><topic>Retina</topic><topic>Retinal Degeneration</topic><topic>Retinal Degeneration - complications</topic><topic>Retinal Degeneration - physiopathology</topic><topic>Retinal Degeneration - prevention &amp; control</topic><topic>Rodents</topic><topic>SDF-1 protein</topic><topic>Stress, Physiological</topic><topic>Stress, Physiological - drug effects</topic><topic>Trabecular Meshwork</topic><topic>Trabecular Meshwork - drug effects</topic><topic>Trabecular Meshwork - pathology</topic><topic>Trabecular Meshwork - physiopathology</topic><topic>Transforming growth factor- beta</topic><topic>Transforming growth factors</topic><topic>Tumor necrosis factor- alpha</topic><topic>Tumor necrosis factor-α</topic><topic>Ultrasonic imaging</topic><topic>Vision, Ocular</topic><topic>Vision, Ocular - drug effects</topic><topic>Visual effects</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denoyer, Alexandre</creatorcontrib><creatorcontrib>Godefroy, David</creatorcontrib><creatorcontrib>Célérier, Isabelle</creatorcontrib><creatorcontrib>Frugier, Julie</creatorcontrib><creatorcontrib>Degardin, Julie</creatorcontrib><creatorcontrib>Harrison, Jeffrey K</creatorcontrib><creatorcontrib>Brignole-Baudouin, Francoise</creatorcontrib><creatorcontrib>Picaud, Serge</creatorcontrib><creatorcontrib>Baleux, Francoise</creatorcontrib><creatorcontrib>Sahel, José A</creatorcontrib><creatorcontrib>Rostène, William</creatorcontrib><creatorcontrib>Baudouin, Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denoyer, Alexandre</au><au>Godefroy, David</au><au>Célérier, Isabelle</au><au>Frugier, Julie</au><au>Degardin, Julie</au><au>Harrison, Jeffrey K</au><au>Brignole-Baudouin, Francoise</au><au>Picaud, Serge</au><au>Baleux, Francoise</au><au>Sahel, José A</au><au>Rostène, William</au><au>Baudouin, Christophe</au><au>Vavvas, Demetrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-04</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e37873</spage><pages>e37873-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Glaucoma, the most common cause of irreversible blindness, is a neuropathy commonly initiated by pathological ocular hypertension due to unknown mechanisms of trabecular meshwork degeneration. Current antiglaucoma therapy does not target the causal trabecular pathology, which may explain why treatment failure is often observed. Here we show that the chemokine CXCL12, its truncated form SDF-1(5-67), and the receptors CXCR4 and CXCR3 are expressed in human glaucomatous trabecular tissue and a human trabecular cell line. SDF-1(5-67) is produced under the control of matrix metallo-proteinases, TNF-α, and TGF-β2, factors known to be involved in glaucoma. CXCL12 protects in vitro trabecular cells from apoptotic death via CXCR4 whereas SDF-1(5-67) induces apoptosis through CXCR3 and caspase activation. Ocular administration of SDF-1(5-67) in the rat increases intraocular pressure. In contrast, administration of a selective CXCR3 antagonist in a rat model of ocular hypertension decreases intraocular pressure, prevents retinal neurodegeneration, and preserves visual function. The protective effect of CXCR3 antagonism is related to restoration of the trabecular function. These data demonstrate that proteolytic cleavage of CXCL12 is involved in trabecular pathophysiology, and that local administration of a selective CXCR3 antagonist may be a beneficial therapeutic strategy for treating ocular hypertension and subsequent retinal degeneration.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22675496</pmid><doi>10.1371/journal.pone.0037873</doi><orcidid>https://orcid.org/0000-0002-2006-5384</orcidid><orcidid>https://orcid.org/0000-0003-4926-1060</orcidid><orcidid>https://orcid.org/0000-0003-1743-6698</orcidid><orcidid>https://orcid.org/0000-0003-4706-2711</orcidid><orcidid>https://orcid.org/0000-0002-0548-5145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e37873
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325002901
source Publicly Available Content Database; PubMed Central
subjects Animals
Antagonism
Apoptosis
Apoptosis - drug effects
Autophagy
Biology
Blindness
Cadmium
Caspase
Caspase 3
Caspase 3 - metabolism
Cell Line
Chemokine CXCL12
Chemokine CXCL12 - pharmacology
Chemokines
CXCL12 protein
CXCR3 protein
CXCR4 protein
Cytoprotection
Cytoprotection - drug effects
Data processing
Degeneration
Disease Models, Animal
Drug therapy
Enzyme Activation
Enzyme Activation - drug effects
Extracellular matrix
Glaucoma
Glaucoma - complications
Glaucoma - metabolism
Glaucoma - pathology
Glaucoma - physiopathology
Health aspects
Humans
Hypertension
Infections
Intraocular Pressure
Intraocular Pressure - drug effects
Life Sciences
Male
Medicine
Metallography
Neurodegeneration
Neuropathy
Ocular Hypertension
Ocular Hypertension - complications
Ocular Hypertension - physiopathology
Pathology
Peptides
Proteases
Proteolysis
Rats
Rats, Long-Evans
Receptors
Receptors, CXCR3
Receptors, CXCR3 - antagonists & inhibitors
Receptors, CXCR3 - metabolism
Receptors, CXCR4
Receptors, CXCR4 - metabolism
Restoration
Retina
Retinal Degeneration
Retinal Degeneration - complications
Retinal Degeneration - physiopathology
Retinal Degeneration - prevention & control
Rodents
SDF-1 protein
Stress, Physiological
Stress, Physiological - drug effects
Trabecular Meshwork
Trabecular Meshwork - drug effects
Trabecular Meshwork - pathology
Trabecular Meshwork - physiopathology
Transforming growth factor- beta
Transforming growth factors
Tumor necrosis factor- alpha
Tumor necrosis factor-α
Ultrasonic imaging
Vision, Ocular
Vision, Ocular - drug effects
Visual effects
Visual perception
title CXCR3 antagonism of SDF-1(5-67) restores trabecular function and prevents retinal neurodegeneration in a rat model of ocular hypertension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXCR3%20antagonism%20of%20SDF-1(5-67)%20restores%20trabecular%20function%20and%20prevents%20retinal%20neurodegeneration%20in%20a%20rat%20model%20of%20ocular%20hypertension&rft.jtitle=PloS%20one&rft.au=Denoyer,%20Alexandre&rft.date=2012-06-04&rft.volume=7&rft.issue=6&rft.spage=e37873&rft.pages=e37873-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0037873&rft_dat=%3Cgale_plos_%3EA477116672%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c660t-fd8f373084b0a9a51e08edc27e327275917f4d32f5464377ba33e98af9124de23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1325002901&rft_id=info:pmid/22675496&rft_galeid=A477116672&rfr_iscdi=true