Loading…

The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin

When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level suppo...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-06, Vol.7 (6), p.e37906
Main Authors: Machné, Rainer, Murray, Douglas B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63
cites cdi_FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63
container_end_page
container_issue 6
container_start_page e37906
container_title PloS one
container_volume 7
creator Machné, Rainer
Murray, Douglas B
description When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions.
doi_str_mv 10.1371/journal.pone.0037906
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1325018701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477115162</galeid><doaj_id>oai_doaj_org_article_7dd41bb1ac34499b8fb963aed433082d</doaj_id><sourcerecordid>A477115162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi12Qyk2S8EErxo1AoaPU2nEnO7KZmku0kq-6_N9Pdlq70QnKRcPKc93wkpyieUzKnTNB3l2E9enDzVfA4J4SJlvAHxSFtWTXjFWEP75wPiicxXhLSMMn54-KgqrhsmlocFv5iieXG-hK8KTfgF2Xoyw1CTGUawUc92lWywb8v0eGAPsUJgHLhQgeu7BFNB_pnGTcx4VB2mH4j-nLABF1wNg7Xwno5hgGS9U-LRz24iM92-1Hx_dPHi5Mvs7Pzz6cnx2czLRqZZjX0qA2YyrQ9J20vuW6JJKITtJa6EZ2uNBMd5VT2FA0DrFspaQuEaiGBs6Pi5VZ35UJUu1ZFRVnVECoFoZk43RImwKVajXaAcaMCWHVtCONCwZisdqiEMTXtOgqa1XXbdrLvWp5jmpoxIiuTtT7soq27AY3ObRrB7Ynu33i7VIvwSzHGp7yzwJudwBiu1hiTGmzU6Bx4DOucN6kIqUXFp8pe_YPeX92OWkAuwPo-5Lh6ElXHtRCUNpRXmZrfQ-VlcLA6_6veZvuew9s9h8wk_JMWsI5RnX77-v_s-Y999vUddong0jIGt55-XtwH6y2oxxDjiP1tkylR01jcdENNY6F2Y5HdXtx9oFunmzlgfwH4DwhS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325018701</pqid></control><display><type>article</type><title>The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Machné, Rainer ; Murray, Douglas B</creator><contributor>Saks, Valdur</contributor><creatorcontrib>Machné, Rainer ; Murray, Douglas B ; Saks, Valdur</creatorcontrib><description>When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0037906</identifier><identifier>PMID: 22685547</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Algorithms ; Analysis ; ATP ; Baking yeast ; Base Composition ; Batch culture ; Biology ; Catabolism ; Cell culture ; Cell cycle ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Cluster Analysis ; Clustering ; Consolidation ; Continuous culture ; Datasets ; Deoxyribonucleic acid ; DNA ; Environmental conditions ; Enzymes ; Feedback ; Feedback, Physiological ; Fourier analysis ; Fourier transforms ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Profiling - statistics &amp; numerical data ; Gene Expression Regulation, Fungal ; Genomes ; Hypotheses ; Metabolism ; Metabolites ; Mitochondria ; Models, Genetic ; Molecular modelling ; Negative feedback ; Neural networks ; Nucleosomes - genetics ; Nucleosomes - metabolism ; Oligonucleotide Array Sequence Analysis ; Oscillations ; Oxygen ; Oxygen uptake ; Physiological aspects ; Physiology ; Protein expression ; Proteins ; Remodeling ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Stress response ; Time Factors ; Transcription ; Transcription (Genetics) ; Transcriptome - genetics</subject><ispartof>PloS one, 2012-06, Vol.7 (6), p.e37906</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Machné, Murray. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Machné, Murray. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63</citedby><cites>FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1325018701/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1325018701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22685547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saks, Valdur</contributor><creatorcontrib>Machné, Rainer</creatorcontrib><creatorcontrib>Murray, Douglas B</creatorcontrib><title>The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions.</description><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>ATP</subject><subject>Baking yeast</subject><subject>Base Composition</subject><subject>Batch culture</subject><subject>Biology</subject><subject>Catabolism</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Consolidation</subject><subject>Continuous culture</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Environmental conditions</subject><subject>Enzymes</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Profiling - statistics &amp; numerical data</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genomes</subject><subject>Hypotheses</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Models, Genetic</subject><subject>Molecular modelling</subject><subject>Negative feedback</subject><subject>Neural networks</subject><subject>Nucleosomes - genetics</subject><subject>Nucleosomes - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oscillations</subject><subject>Oxygen</subject><subject>Oxygen uptake</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Remodeling</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stress response</subject><subject>Time Factors</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcriptome - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQfRi12Qyk2S8EErxo1AoaPU2nEnO7KZmku0kq-6_N9Pdlq70QnKRcPKc93wkpyieUzKnTNB3l2E9enDzVfA4J4SJlvAHxSFtWTXjFWEP75wPiicxXhLSMMn54-KgqrhsmlocFv5iieXG-hK8KTfgF2Xoyw1CTGUawUc92lWywb8v0eGAPsUJgHLhQgeu7BFNB_pnGTcx4VB2mH4j-nLABF1wNg7Xwno5hgGS9U-LRz24iM92-1Hx_dPHi5Mvs7Pzz6cnx2czLRqZZjX0qA2YyrQ9J20vuW6JJKITtJa6EZ2uNBMd5VT2FA0DrFspaQuEaiGBs6Pi5VZ35UJUu1ZFRVnVECoFoZk43RImwKVajXaAcaMCWHVtCONCwZisdqiEMTXtOgqa1XXbdrLvWp5jmpoxIiuTtT7soq27AY3ObRrB7Ynu33i7VIvwSzHGp7yzwJudwBiu1hiTGmzU6Bx4DOucN6kIqUXFp8pe_YPeX92OWkAuwPo-5Lh6ElXHtRCUNpRXmZrfQ-VlcLA6_6veZvuew9s9h8wk_JMWsI5RnX77-v_s-Y999vUddong0jIGt55-XtwH6y2oxxDjiP1tkylR01jcdENNY6F2Y5HdXtx9oFunmzlgfwH4DwhS</recordid><startdate>20120607</startdate><enddate>20120607</enddate><creator>Machné, Rainer</creator><creator>Murray, Douglas B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120607</creationdate><title>The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin</title><author>Machné, Rainer ; Murray, Douglas B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>ATP</topic><topic>Baking yeast</topic><topic>Base Composition</topic><topic>Batch culture</topic><topic>Biology</topic><topic>Catabolism</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Consolidation</topic><topic>Continuous culture</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Environmental conditions</topic><topic>Enzymes</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Profiling - statistics &amp; numerical data</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genomes</topic><topic>Hypotheses</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Models, Genetic</topic><topic>Molecular modelling</topic><topic>Negative feedback</topic><topic>Neural networks</topic><topic>Nucleosomes - genetics</topic><topic>Nucleosomes - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oscillations</topic><topic>Oxygen</topic><topic>Oxygen uptake</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Remodeling</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stress response</topic><topic>Time Factors</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machné, Rainer</creatorcontrib><creatorcontrib>Murray, Douglas B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machné, Rainer</au><au>Murray, Douglas B</au><au>Saks, Valdur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-06-07</date><risdate>2012</risdate><volume>7</volume><issue>6</issue><spage>e37906</spage><pages>e37906-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22685547</pmid><doi>10.1371/journal.pone.0037906</doi><tpages>e37906</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-06, Vol.7 (6), p.e37906
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325018701
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Adenosine diphosphate
Adenosine Diphosphate - metabolism
Adenosine triphosphate
Adenosine Triphosphate - metabolism
Algorithms
Analysis
ATP
Baking yeast
Base Composition
Batch culture
Biology
Catabolism
Cell culture
Cell cycle
Chromatin
Chromatin - genetics
Chromatin - metabolism
Cluster Analysis
Clustering
Consolidation
Continuous culture
Datasets
Deoxyribonucleic acid
DNA
Environmental conditions
Enzymes
Feedback
Feedback, Physiological
Fourier analysis
Fourier transforms
Gene expression
Gene Expression Profiling - methods
Gene Expression Profiling - statistics & numerical data
Gene Expression Regulation, Fungal
Genomes
Hypotheses
Metabolism
Metabolites
Mitochondria
Models, Genetic
Molecular modelling
Negative feedback
Neural networks
Nucleosomes - genetics
Nucleosomes - metabolism
Oligonucleotide Array Sequence Analysis
Oscillations
Oxygen
Oxygen uptake
Physiological aspects
Physiology
Protein expression
Proteins
Remodeling
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Stress response
Time Factors
Transcription
Transcription (Genetics)
Transcriptome - genetics
title The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20yin%20and%20yang%20of%20yeast%20transcription:%20elements%20of%20a%20global%20feedback%20system%20between%20metabolism%20and%20chromatin&rft.jtitle=PloS%20one&rft.au=Machn%C3%A9,%20Rainer&rft.date=2012-06-07&rft.volume=7&rft.issue=6&rft.spage=e37906&rft.pages=e37906-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0037906&rft_dat=%3Cgale_plos_%3EA477115162%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-4afecdad2d9f609f86c90807b7148c57bc2c37b1618f1ed3ae498819a01c78a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1325018701&rft_id=info:pmid/22685547&rft_galeid=A477115162&rfr_iscdi=true