Loading…

NKT Cells Stimulated by Long Fatty Acyl Chain Sulfatides Significantly Reduces the Incidence of Type 1 Diabetes in Nonobese Diabetic Mice

Sulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer.sup.+...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-05, Vol.7 (5), p.e37771
Main Authors: Subramanian, Lakshmimathy, Blumenfeld, Hartley, Tohn, Robert, Ly, Dalam, Aguilera, Carlos, Maricic, Igor, Mansson, Jan-Eric, Buschard, Karsten, Kumar, Vipin, Delovitch, Terry L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sulfatide-reactive type II NKT cells have been shown to regulate autoimmunity and anti-tumor immunity. Although, two major isoforms of sulfatide, C16:0 and C24:0, are enriched in the pancreas, their relative role in autoimmune diabetes is not known. Here, we report that sulfatide/CD1d-tetramer.sup.+ cells accumulate in the draining pancreatic lymph nodes, and that treatment of NOD mice with sulfatide or C24:0 was more efficient than C16:0 in stimulating the NKT cell-mediated transfer of a delay in onset from T1D into NOD.Scid recipients. Using NOD.CD1d.sup.-/- mice, we show that this delay of T1D is CD1d-dependent. Interestingly, the latter delay or protection from T1D is associated with the enhanced secretion of IL-10 rather than IFN-g by C24:0-treated CD4.sup.+ T cells and the deviation of the islet-reactive diabetogenic T cell response. Both C16:0 and C24:0 sulfatide isoforms are unable to activate and expand type I iNKT cells. Collectively, these data suggest that C24:0 stimulated type II NKT cells may regulate protection from T1D by activating DCs to secrete IL-10 and suppress the activation and expansion of type I iNKT cells and diabetogenic T cells. Our results raise the possibility that C24:0 may be used therapeutically to delay the onset and protect from T1D in humans.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0037771