Loading…
Contraction mechanisms in composite active actin networks
Simplified in vitro systems are ideally suited for studying the principle mechanisms of the contraction of cytoskeletal actin systems. To shed light on the dependence of the contraction mechanism on the nature of the crosslinking proteins, we study reconstituted in vitro active actin networks on dif...
Saved in:
Published in: | PloS one 2012-07, Vol.7 (7), p.e39869-e39869 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Simplified in vitro systems are ideally suited for studying the principle mechanisms of the contraction of cytoskeletal actin systems. To shed light on the dependence of the contraction mechanism on the nature of the crosslinking proteins, we study reconstituted in vitro active actin networks on different length scales ranging from the molecular organization to the macroscopic contraction. Distinct contraction mechanisms are observed in polar and apolar crosslinked active gels whereas composite active gels crosslinked in a polar and apolar fashion at the same time exhibit both mechanisms simultaneously. In polar active actin/fascin networks initially bundles are formed which are then rearranged. In contrast, apolar cortexillin-I crosslinked active gels are bundled only after reorganization of actin filaments by myosin-II motor filaments. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0039869 |