Loading…
Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae
Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between th...
Saved in:
Published in: | PloS one 2012-07, Vol.7 (7), p.e40765-e40765 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93 |
container_end_page | e40765 |
container_issue | 7 |
container_start_page | e40765 |
container_title | PloS one |
container_volume | 7 |
creator | Yoshibori, Mariko Yorimitsu, Tomohiro Sato, Ken |
description | Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2. |
doi_str_mv | 10.1371/journal.pone.0040765 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1325464935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9db15bb229f48609caf5794703d1176</doaj_id><sourcerecordid>2941493361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</originalsourceid><addsrcrecordid>eNptkt-K1DAUxoso7rr6BqIFbwTpmD9NOrlZkGFXCwu7oF6HNDmZydA2NWkH5gF8b1Onu-yKVzkkv-_LOYcvy95itMK0wp_3fgq9aleD72GFUIkqzp5l51hQUnCC6PNH9Vn2KsY9QoyuOX-ZnRFSCVIidp79rvuDbw_QQT_m3ubjDvIh1aq4ui52qjf5EPwIrs_vwOIhT8WMbBT5VBhIpJmFAbZTq0bn-9ljc3tX13mcmql3Y65ihK5pj7P0u9J6p4LvjhpiriHAwUWn4HX2wqo2wpvlvMh-Xl_92Hwrbm6_1psvN4VmhIyFKJuKGiuAK4awQJqSNWOlFYJrodOjsRRzzpS1aR_CckQFxw2sKy4oA0Evsvcn36H1US4bjBJTwkpeJiYR9YkwXu3lEFynwlF65eTfCx-2UoXR6RakEabBrGkIEbZccyS0sqwSZYWowbjiyety-W1qOjA6bSqo9onp05fe7eTWHySlyYXSZPBxMQj-1wRxlJ2LGtpW9eCn1Dcic9OMz5N9-Af9_3TlidLBxxjAPjSDkZxTda-Sc6rkkqoke_d4kAfRfYzoH2xMyqc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325464935</pqid></control><display><type>article</type><title>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Yoshibori, Mariko ; Yorimitsu, Tomohiro ; Sato, Ken</creator><contributor>Hong, Wanjin</contributor><creatorcontrib>Yoshibori, Mariko ; Yorimitsu, Tomohiro ; Sato, Ken ; Hong, Wanjin</creatorcontrib><description>Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0040765</identifier><identifier>PMID: 22792405</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Assembly ; Baking yeast ; Biological Transport ; Biology ; Calcium - metabolism ; Calcium ions ; Calcium signalling ; Calcium-binding protein ; Calcium-Binding Proteins - chemistry ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Cell Membrane - metabolism ; Coat protein ; COP-Coated Vesicles - metabolism ; EF-hand ; EF-hand protein ; Endoplasmic reticulum ; Free form ; Gene Expression ; Golgi apparatus ; Hand protein ; Homology ; Life sciences ; Lipids ; Mammals ; Molecular Sequence Data ; Multiprotein Complexes - metabolism ; Nuclear Pore Complex Proteins - metabolism ; Physiology ; Protein Binding ; Protein Transport ; Proteins ; Regulation ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; Trends ; Vesicular Transport Proteins - metabolism ; Yeast</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e40765-e40765</ispartof><rights>2012 Yoshibori et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Yoshibori et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</citedby><cites>FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1325464935/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1325464935?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22792405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hong, Wanjin</contributor><creatorcontrib>Yoshibori, Mariko</creatorcontrib><creatorcontrib>Yorimitsu, Tomohiro</creatorcontrib><creatorcontrib>Sato, Ken</creatorcontrib><title>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.</description><subject>Amino Acid Sequence</subject><subject>Assembly</subject><subject>Baking yeast</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Coat protein</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>EF-hand</subject><subject>EF-hand protein</subject><subject>Endoplasmic reticulum</subject><subject>Free form</subject><subject>Gene Expression</subject><subject>Golgi apparatus</subject><subject>Hand protein</subject><subject>Homology</subject><subject>Life sciences</subject><subject>Lipids</subject><subject>Mammals</subject><subject>Molecular Sequence Data</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Trends</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-K1DAUxoso7rr6BqIFbwTpmD9NOrlZkGFXCwu7oF6HNDmZydA2NWkH5gF8b1Onu-yKVzkkv-_LOYcvy95itMK0wp_3fgq9aleD72GFUIkqzp5l51hQUnCC6PNH9Vn2KsY9QoyuOX-ZnRFSCVIidp79rvuDbw_QQT_m3ubjDvIh1aq4ui52qjf5EPwIrs_vwOIhT8WMbBT5VBhIpJmFAbZTq0bn-9ljc3tX13mcmql3Y65ihK5pj7P0u9J6p4LvjhpiriHAwUWn4HX2wqo2wpvlvMh-Xl_92Hwrbm6_1psvN4VmhIyFKJuKGiuAK4awQJqSNWOlFYJrodOjsRRzzpS1aR_CckQFxw2sKy4oA0Evsvcn36H1US4bjBJTwkpeJiYR9YkwXu3lEFynwlF65eTfCx-2UoXR6RakEabBrGkIEbZccyS0sqwSZYWowbjiyety-W1qOjA6bSqo9onp05fe7eTWHySlyYXSZPBxMQj-1wRxlJ2LGtpW9eCn1Dcic9OMz5N9-Af9_3TlidLBxxjAPjSDkZxTda-Sc6rkkqoke_d4kAfRfYzoH2xMyqc</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Yoshibori, Mariko</creator><creator>Yorimitsu, Tomohiro</creator><creator>Sato, Ken</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120711</creationdate><title>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</title><author>Yoshibori, Mariko ; Yorimitsu, Tomohiro ; Sato, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Assembly</topic><topic>Baking yeast</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Coat protein</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>EF-hand</topic><topic>EF-hand protein</topic><topic>Endoplasmic reticulum</topic><topic>Free form</topic><topic>Gene Expression</topic><topic>Golgi apparatus</topic><topic>Hand protein</topic><topic>Homology</topic><topic>Life sciences</topic><topic>Lipids</topic><topic>Mammals</topic><topic>Molecular Sequence Data</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Trends</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshibori, Mariko</creatorcontrib><creatorcontrib>Yorimitsu, Tomohiro</creatorcontrib><creatorcontrib>Sato, Ken</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshibori, Mariko</au><au>Yorimitsu, Tomohiro</au><au>Sato, Ken</au><au>Hong, Wanjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-11</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e40765</spage><epage>e40765</epage><pages>e40765-e40765</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22792405</pmid><doi>10.1371/journal.pone.0040765</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-07, Vol.7 (7), p.e40765-e40765 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1325464935 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Amino Acid Sequence Assembly Baking yeast Biological Transport Biology Calcium - metabolism Calcium ions Calcium signalling Calcium-binding protein Calcium-Binding Proteins - chemistry Calcium-Binding Proteins - genetics Calcium-Binding Proteins - metabolism Cell Membrane - metabolism Coat protein COP-Coated Vesicles - metabolism EF-hand EF-hand protein Endoplasmic reticulum Free form Gene Expression Golgi apparatus Hand protein Homology Life sciences Lipids Mammals Molecular Sequence Data Multiprotein Complexes - metabolism Nuclear Pore Complex Proteins - metabolism Physiology Protein Binding Protein Transport Proteins Regulation Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sequence Alignment Trends Vesicular Transport Proteins - metabolism Yeast |
title | Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20the%20penta-EF-hand%20protein%20Pef1p%20in%20the%20Ca2+-dependent%20regulation%20of%20COPII%20subunit%20assembly%20in%20Saccharomyces%20cerevisiae&rft.jtitle=PloS%20one&rft.au=Yoshibori,%20Mariko&rft.date=2012-07-11&rft.volume=7&rft.issue=7&rft.spage=e40765&rft.epage=e40765&rft.pages=e40765-e40765&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0040765&rft_dat=%3Cproquest_plos_%3E2941493361%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1325464935&rft_id=info:pmid/22792405&rfr_iscdi=true |