Loading…

Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae

Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between th...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-07, Vol.7 (7), p.e40765-e40765
Main Authors: Yoshibori, Mariko, Yorimitsu, Tomohiro, Sato, Ken
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93
cites cdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93
container_end_page e40765
container_issue 7
container_start_page e40765
container_title PloS one
container_volume 7
creator Yoshibori, Mariko
Yorimitsu, Tomohiro
Sato, Ken
description Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.
doi_str_mv 10.1371/journal.pone.0040765
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1325464935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9db15bb229f48609caf5794703d1176</doaj_id><sourcerecordid>2941493361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</originalsourceid><addsrcrecordid>eNptkt-K1DAUxoso7rr6BqIFbwTpmD9NOrlZkGFXCwu7oF6HNDmZydA2NWkH5gF8b1Onu-yKVzkkv-_LOYcvy95itMK0wp_3fgq9aleD72GFUIkqzp5l51hQUnCC6PNH9Vn2KsY9QoyuOX-ZnRFSCVIidp79rvuDbw_QQT_m3ubjDvIh1aq4ui52qjf5EPwIrs_vwOIhT8WMbBT5VBhIpJmFAbZTq0bn-9ljc3tX13mcmql3Y65ihK5pj7P0u9J6p4LvjhpiriHAwUWn4HX2wqo2wpvlvMh-Xl_92Hwrbm6_1psvN4VmhIyFKJuKGiuAK4awQJqSNWOlFYJrodOjsRRzzpS1aR_CckQFxw2sKy4oA0Evsvcn36H1US4bjBJTwkpeJiYR9YkwXu3lEFynwlF65eTfCx-2UoXR6RakEabBrGkIEbZccyS0sqwSZYWowbjiyety-W1qOjA6bSqo9onp05fe7eTWHySlyYXSZPBxMQj-1wRxlJ2LGtpW9eCn1Dcic9OMz5N9-Af9_3TlidLBxxjAPjSDkZxTda-Sc6rkkqoke_d4kAfRfYzoH2xMyqc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325464935</pqid></control><display><type>article</type><title>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Yoshibori, Mariko ; Yorimitsu, Tomohiro ; Sato, Ken</creator><contributor>Hong, Wanjin</contributor><creatorcontrib>Yoshibori, Mariko ; Yorimitsu, Tomohiro ; Sato, Ken ; Hong, Wanjin</creatorcontrib><description>Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0040765</identifier><identifier>PMID: 22792405</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Assembly ; Baking yeast ; Biological Transport ; Biology ; Calcium - metabolism ; Calcium ions ; Calcium signalling ; Calcium-binding protein ; Calcium-Binding Proteins - chemistry ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Cell Membrane - metabolism ; Coat protein ; COP-Coated Vesicles - metabolism ; EF-hand ; EF-hand protein ; Endoplasmic reticulum ; Free form ; Gene Expression ; Golgi apparatus ; Hand protein ; Homology ; Life sciences ; Lipids ; Mammals ; Molecular Sequence Data ; Multiprotein Complexes - metabolism ; Nuclear Pore Complex Proteins - metabolism ; Physiology ; Protein Binding ; Protein Transport ; Proteins ; Regulation ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; Trends ; Vesicular Transport Proteins - metabolism ; Yeast</subject><ispartof>PloS one, 2012-07, Vol.7 (7), p.e40765-e40765</ispartof><rights>2012 Yoshibori et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Yoshibori et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</citedby><cites>FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1325464935/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1325464935?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22792405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hong, Wanjin</contributor><creatorcontrib>Yoshibori, Mariko</creatorcontrib><creatorcontrib>Yorimitsu, Tomohiro</creatorcontrib><creatorcontrib>Sato, Ken</creatorcontrib><title>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.</description><subject>Amino Acid Sequence</subject><subject>Assembly</subject><subject>Baking yeast</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Coat protein</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>EF-hand</subject><subject>EF-hand protein</subject><subject>Endoplasmic reticulum</subject><subject>Free form</subject><subject>Gene Expression</subject><subject>Golgi apparatus</subject><subject>Hand protein</subject><subject>Homology</subject><subject>Life sciences</subject><subject>Lipids</subject><subject>Mammals</subject><subject>Molecular Sequence Data</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Pore Complex Proteins - metabolism</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Regulation</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Trends</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-K1DAUxoso7rr6BqIFbwTpmD9NOrlZkGFXCwu7oF6HNDmZydA2NWkH5gF8b1Onu-yKVzkkv-_LOYcvy95itMK0wp_3fgq9aleD72GFUIkqzp5l51hQUnCC6PNH9Vn2KsY9QoyuOX-ZnRFSCVIidp79rvuDbw_QQT_m3ubjDvIh1aq4ui52qjf5EPwIrs_vwOIhT8WMbBT5VBhIpJmFAbZTq0bn-9ljc3tX13mcmql3Y65ihK5pj7P0u9J6p4LvjhpiriHAwUWn4HX2wqo2wpvlvMh-Xl_92Hwrbm6_1psvN4VmhIyFKJuKGiuAK4awQJqSNWOlFYJrodOjsRRzzpS1aR_CckQFxw2sKy4oA0Evsvcn36H1US4bjBJTwkpeJiYR9YkwXu3lEFynwlF65eTfCx-2UoXR6RakEabBrGkIEbZccyS0sqwSZYWowbjiyety-W1qOjA6bSqo9onp05fe7eTWHySlyYXSZPBxMQj-1wRxlJ2LGtpW9eCn1Dcic9OMz5N9-Af9_3TlidLBxxjAPjSDkZxTda-Sc6rkkqoke_d4kAfRfYzoH2xMyqc</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Yoshibori, Mariko</creator><creator>Yorimitsu, Tomohiro</creator><creator>Sato, Ken</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120711</creationdate><title>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</title><author>Yoshibori, Mariko ; Yorimitsu, Tomohiro ; Sato, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Assembly</topic><topic>Baking yeast</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Coat protein</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>EF-hand</topic><topic>EF-hand protein</topic><topic>Endoplasmic reticulum</topic><topic>Free form</topic><topic>Gene Expression</topic><topic>Golgi apparatus</topic><topic>Hand protein</topic><topic>Homology</topic><topic>Life sciences</topic><topic>Lipids</topic><topic>Mammals</topic><topic>Molecular Sequence Data</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Pore Complex Proteins - metabolism</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Regulation</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Trends</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshibori, Mariko</creatorcontrib><creatorcontrib>Yorimitsu, Tomohiro</creatorcontrib><creatorcontrib>Sato, Ken</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshibori, Mariko</au><au>Yorimitsu, Tomohiro</au><au>Sato, Ken</au><au>Hong, Wanjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-07-11</date><risdate>2012</risdate><volume>7</volume><issue>7</issue><spage>e40765</spage><epage>e40765</epage><pages>e40765-e40765</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22792405</pmid><doi>10.1371/journal.pone.0040765</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-07, Vol.7 (7), p.e40765-e40765
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1325464935
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Amino Acid Sequence
Assembly
Baking yeast
Biological Transport
Biology
Calcium - metabolism
Calcium ions
Calcium signalling
Calcium-binding protein
Calcium-Binding Proteins - chemistry
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - metabolism
Cell Membrane - metabolism
Coat protein
COP-Coated Vesicles - metabolism
EF-hand
EF-hand protein
Endoplasmic reticulum
Free form
Gene Expression
Golgi apparatus
Hand protein
Homology
Life sciences
Lipids
Mammals
Molecular Sequence Data
Multiprotein Complexes - metabolism
Nuclear Pore Complex Proteins - metabolism
Physiology
Protein Binding
Protein Transport
Proteins
Regulation
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Alignment
Trends
Vesicular Transport Proteins - metabolism
Yeast
title Involvement of the penta-EF-hand protein Pef1p in the Ca2+-dependent regulation of COPII subunit assembly in Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20the%20penta-EF-hand%20protein%20Pef1p%20in%20the%20Ca2+-dependent%20regulation%20of%20COPII%20subunit%20assembly%20in%20Saccharomyces%20cerevisiae&rft.jtitle=PloS%20one&rft.au=Yoshibori,%20Mariko&rft.date=2012-07-11&rft.volume=7&rft.issue=7&rft.spage=e40765&rft.epage=e40765&rft.pages=e40765-e40765&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0040765&rft_dat=%3Cproquest_plos_%3E2941493361%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-94b73df9e6a50190c328554f996c9c4b7df31665aff0409f603961be876935e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1325464935&rft_id=info:pmid/22792405&rfr_iscdi=true