Loading…

GM-CSF priming drives bone marrow-derived macrophages to a pro-inflammatory pattern and downmodulates PGE2 in response to TLR2 ligands

In response to pathogen recognition by Toll-like receptors (TLRs) on their cell surface, macrophages release lipid mediators and cytokines that are widely distributed throughout the body and play essential roles in host responses. Granulocyte macrophage colony-stimulating factor (GM-CSF) is importan...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-07, Vol.7 (7), p.e40523
Main Authors: Sorgi, Carlos Arterio, Rose, Stephanie, Court, Nathalie, Carlos, Daniela, Paula-Silva, Francisco Wanderley Garcia, Assis, Patricia Aparecida, Frantz, Fabiani Gai, Ryffel, Bernhard, Quesniaux, Valerie, Faccioli, Lúcia Helena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In response to pathogen recognition by Toll-like receptors (TLRs) on their cell surface, macrophages release lipid mediators and cytokines that are widely distributed throughout the body and play essential roles in host responses. Granulocyte macrophage colony-stimulating factor (GM-CSF) is important for the immune response during infections to improve the clearance of microorganisms. In this study, we examined the release of mediators in response to TLR2 ligands by bone marrow-derived macrophages (BMDMs) primed with GM-CSF. We demonstrated that when stimulated with TLR2 ligands, non-primed BMDMs preferentially produced PGE(2) in greater amounts than LTB(4). However, GM-CSF priming shifted the release of lipid mediators by BMDMs, resulting in a significant decrease of PGE(2) production in response to the same stimuli. The decrease of PGE(2) production from primed BMDMs was accompanied by a decrease in PGE-synthase mRNA expression and an increase in TNF-α and nitric oxide (NO) production. Moreover, some GM-CSF effects were potentiated by the addition of IFN-γ. Using a variety of TLR2 ligands, we established that PGE(2) release by GM-CSF-primed BMDMs was dependent on TLR2 co-receptors (TLR1, TLR6), CD14, MyD88 and the nuclear translocation of NFκB but was not dependent on peroxisome proliferator-activated receptor-γ (PPAR-γ) activation. Indeed, GM-CSF priming enhanced TLR2, TLR4 and MyD88 mRNA expression and phospho-IκBα formation. These findings demonstrate that GM-CSF drives BMDMs to present a profile relevant to the host during infections.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0040523