Loading…

Molecular imaging reveals a progressive pulmonary inflammation in lower airways in ferrets infected with 2009 H1N1 pandemic influenza virus

Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [(18)F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal p...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-07, Vol.7 (7), p.e40094-e40094
Main Authors: Jonsson, Colleen B, Camp, Jeremy V, Wu, Albert, Zheng, Huaiyu, Kraenzle, Jennifer L, Biller, Ashley E, Vanover, Carol D, Chu, Yong-Kyu, Ng, Chin K, Proctor, Mary, Sherwood, Leslie, Steffen, Marlene C, Mollura, Daniel J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [(18)F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [(18)F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7-7.0). By days 2 and 3, consolidation (CT) and inflammation ([(18)F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0-7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [(18)F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman's ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0040094