Loading…

Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach

Primary production (PP) in the English Channel was measured using (13)C uptake and compared to the electron transport rate (ETR) measured using PAM (pulse amplitude modulated fluorometer). The relationship between carbon incorporation (P(obs)) and ETR was not linear but logarithmic. This result can...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-07, Vol.7 (7), p.e40284-e40284
Main Authors: Napoléon, Camille, Claquin, Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Primary production (PP) in the English Channel was measured using (13)C uptake and compared to the electron transport rate (ETR) measured using PAM (pulse amplitude modulated fluorometer). The relationship between carbon incorporation (P(obs)) and ETR was not linear but logarithmic. This result can be explained by alternative electron sinks at high irradiance which protect the phytoplankton from photoinhibition. A multi-parametric model was developed to estimate PP by ETR. This approach highlighted the importance of taking physicochemical parameters like incident light and nutrient concentrations into account. The variation in the ETR/P(obs) ratio as a function of the light revealed different trends which were characterized by three parameters (R(max), the maximum value of ETR/P(obs); E(Rmax), the light intensity at which R(max) is measured; γ the initial slope of the curve). Based on the values of these three parameters, data were divided into six groups which were highly dependent on the seasons and on the physicochemical conditions. Using the multi-parametric model which we defined by P(obs) and ETR measurements at low frequencies, the high frequency measurements of ETR enabled us to estimate the primary production capacity between November 2009 and December 2010 at high temporal and spatial scales.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0040284