Loading…
Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity
The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal...
Saved in:
Published in: | PloS one 2012-08, Vol.7 (8), p.e43962-e43962 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c659t-437ed5aa4e0c372fad5c82ad02ff6e181fbb0d1584c5bf4eddc443ddb7c733103 |
---|---|
cites | |
container_end_page | e43962 |
container_issue | 8 |
container_start_page | e43962 |
container_title | PloS one |
container_volume | 7 |
creator | Chon, Su-Hyoun Douglass, John D Zhou, Yin Xiu Malik, Nashmia Dixon, Joseph L Brinker, Anita Quadro, Loredana Storch, Judith |
description | The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate. |
doi_str_mv | 10.1371/journal.pone.0043962 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326543584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498244655</galeid><doaj_id>oai_doaj_org_article_6bbba78106074b319bebe8ae055abf9e</doaj_id><sourcerecordid>A498244655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-437ed5aa4e0c372fad5c82ad02ff6e181fbb0d1584c5bf4eddc443ddb7c733103</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEomXgDRBYYlMkZvAttw1SVUGpNKgbWFu-nKSuHHuwMwN5EN4XD5NWHVR5Ecv5_-_4HP9F8ZrgFWE1-XgbttFLt9oEDyuMOWsr-qQ4JS2jy4pi9vTB_qR4kdItxiVrqup5cUJpmxGsPi3-XO8gLuH3JkJKNngUOjQEH6SeXO8mDTE45OxGJkBn3y7X75H1KA3SubwZIY3WA5JuhJgQeBO09F4q64M1yMEOXELSG_TrJjhAKpgpqyD2E1LSSa_hA8qFty5j-j05KEh2nF4WzzrpEryav4vix5fP3y--LtfXl1cX5-ulrsp2XHJWgyml5IA1q2knTakbKg2mXVcBaUinFDakbLguVcfBGM05M0bVumaMYLYo3h64GxeSmCeaBGG0KjnLvqy4OihMkLdiE-0g4ySCtOLfQYi9kHG02oGolFKybgiucM0VI60CBY0EXJZSdS1k1qe52lYNYDT4MUp3BD3-4-2N6MNOME5bnh9zUZzNgBh-bvPwxWCTBpcnCWGb741ZXZUlpnWWvvtP-nh3s6qXuQHru5Dr6j1UnPO2oZxnXFatHlHlZWCwOsevs_n8yMAPBh1DShG6-x4JFvvw3l1G7MMr5vBm25uH87k33aWV_QVhXfBR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326543584</pqid></control><display><type>article</type><title>Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Chon, Su-Hyoun ; Douglass, John D ; Zhou, Yin Xiu ; Malik, Nashmia ; Dixon, Joseph L ; Brinker, Anita ; Quadro, Loredana ; Storch, Judith</creator><contributor>Luque, Raul M.</contributor><creatorcontrib>Chon, Su-Hyoun ; Douglass, John D ; Zhou, Yin Xiu ; Malik, Nashmia ; Dixon, Joseph L ; Brinker, Anita ; Quadro, Loredana ; Storch, Judith ; Luque, Raul M.</creatorcontrib><description>The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0043962</identifier><identifier>PMID: 22937137</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose tissue ; Adiposity - physiology ; Agouti-Related Protein - metabolism ; Animals ; Appetite - physiology ; Arachidonic Acids - metabolism ; Basal Metabolism - physiology ; Biology ; Body fat ; Body mass ; Body weight ; Body weight gain ; Brain - metabolism ; Cannabinoids ; Diabetes ; Diet ; Eating - physiology ; Endocannabinoids ; Endocannabinoids - metabolism ; Energy ; Energy balance ; Energy expenditure ; Energy Metabolism - physiology ; Enzymes ; Fatty acids ; Food intake ; Gene expression ; Genetic aspects ; Genomes ; Glycerides - metabolism ; Glycerol ; Insulin resistance ; Intestine, Small - metabolism ; Lean body mass ; Lipase ; Lipids ; Medicine ; Metabolic rate ; Metabolism ; Mice ; Mice, Transgenic ; Monoacylglycerol Lipases - genetics ; Monoacylglycerol Lipases - metabolism ; Mucosa ; Neuropeptide Y - metabolism ; Obesity ; Obesity - genetics ; Obesity - metabolism ; Overexpression ; Phenotypes ; Physiological aspects ; Polyunsaturated Alkamides - metabolism ; Pro-Opiomelanocortin - metabolism ; Proteins ; Receptor, Cannabinoid, CB1 - metabolism ; Risk factors ; Rodents ; Small intestine ; Transgenic animals ; Transgenic mice ; Triglycerides ; Triglycerides - metabolism</subject><ispartof>PloS one, 2012-08, Vol.7 (8), p.e43962-e43962</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Chon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Chon et al 2012 Chon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-437ed5aa4e0c372fad5c82ad02ff6e181fbb0d1584c5bf4eddc443ddb7c733103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1326543584/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1326543584?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22937137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Luque, Raul M.</contributor><creatorcontrib>Chon, Su-Hyoun</creatorcontrib><creatorcontrib>Douglass, John D</creatorcontrib><creatorcontrib>Zhou, Yin Xiu</creatorcontrib><creatorcontrib>Malik, Nashmia</creatorcontrib><creatorcontrib>Dixon, Joseph L</creatorcontrib><creatorcontrib>Brinker, Anita</creatorcontrib><creatorcontrib>Quadro, Loredana</creatorcontrib><creatorcontrib>Storch, Judith</creatorcontrib><title>Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate.</description><subject>Adipose tissue</subject><subject>Adiposity - physiology</subject><subject>Agouti-Related Protein - metabolism</subject><subject>Animals</subject><subject>Appetite - physiology</subject><subject>Arachidonic Acids - metabolism</subject><subject>Basal Metabolism - physiology</subject><subject>Biology</subject><subject>Body fat</subject><subject>Body mass</subject><subject>Body weight</subject><subject>Body weight gain</subject><subject>Brain - metabolism</subject><subject>Cannabinoids</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Eating - physiology</subject><subject>Endocannabinoids</subject><subject>Endocannabinoids - metabolism</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy expenditure</subject><subject>Energy Metabolism - physiology</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Food intake</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Glycerides - metabolism</subject><subject>Glycerol</subject><subject>Insulin resistance</subject><subject>Intestine, Small - metabolism</subject><subject>Lean body mass</subject><subject>Lipase</subject><subject>Lipids</subject><subject>Medicine</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Monoacylglycerol Lipases - genetics</subject><subject>Monoacylglycerol Lipases - metabolism</subject><subject>Mucosa</subject><subject>Neuropeptide Y - metabolism</subject><subject>Obesity</subject><subject>Obesity - genetics</subject><subject>Obesity - metabolism</subject><subject>Overexpression</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Polyunsaturated Alkamides - metabolism</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>Proteins</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Small intestine</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Triglycerides</subject><subject>Triglycerides - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiMEomXgDRBYYlMkZvAttw1SVUGpNKgbWFu-nKSuHHuwMwN5EN4XD5NWHVR5Ecv5_-_4HP9F8ZrgFWE1-XgbttFLt9oEDyuMOWsr-qQ4JS2jy4pi9vTB_qR4kdItxiVrqup5cUJpmxGsPi3-XO8gLuH3JkJKNngUOjQEH6SeXO8mDTE45OxGJkBn3y7X75H1KA3SubwZIY3WA5JuhJgQeBO09F4q64M1yMEOXELSG_TrJjhAKpgpqyD2E1LSSa_hA8qFty5j-j05KEh2nF4WzzrpEryav4vix5fP3y--LtfXl1cX5-ulrsp2XHJWgyml5IA1q2knTakbKg2mXVcBaUinFDakbLguVcfBGM05M0bVumaMYLYo3h64GxeSmCeaBGG0KjnLvqy4OihMkLdiE-0g4ySCtOLfQYi9kHG02oGolFKybgiucM0VI60CBY0EXJZSdS1k1qe52lYNYDT4MUp3BD3-4-2N6MNOME5bnh9zUZzNgBh-bvPwxWCTBpcnCWGb741ZXZUlpnWWvvtP-nh3s6qXuQHru5Dr6j1UnPO2oZxnXFatHlHlZWCwOsevs_n8yMAPBh1DShG6-x4JFvvw3l1G7MMr5vBm25uH87k33aWV_QVhXfBR</recordid><startdate>20120828</startdate><enddate>20120828</enddate><creator>Chon, Su-Hyoun</creator><creator>Douglass, John D</creator><creator>Zhou, Yin Xiu</creator><creator>Malik, Nashmia</creator><creator>Dixon, Joseph L</creator><creator>Brinker, Anita</creator><creator>Quadro, Loredana</creator><creator>Storch, Judith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120828</creationdate><title>Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity</title><author>Chon, Su-Hyoun ; Douglass, John D ; Zhou, Yin Xiu ; Malik, Nashmia ; Dixon, Joseph L ; Brinker, Anita ; Quadro, Loredana ; Storch, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-437ed5aa4e0c372fad5c82ad02ff6e181fbb0d1584c5bf4eddc443ddb7c733103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adipose tissue</topic><topic>Adiposity - physiology</topic><topic>Agouti-Related Protein - metabolism</topic><topic>Animals</topic><topic>Appetite - physiology</topic><topic>Arachidonic Acids - metabolism</topic><topic>Basal Metabolism - physiology</topic><topic>Biology</topic><topic>Body fat</topic><topic>Body mass</topic><topic>Body weight</topic><topic>Body weight gain</topic><topic>Brain - metabolism</topic><topic>Cannabinoids</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Eating - physiology</topic><topic>Endocannabinoids</topic><topic>Endocannabinoids - metabolism</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy expenditure</topic><topic>Energy Metabolism - physiology</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Food intake</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Glycerides - metabolism</topic><topic>Glycerol</topic><topic>Insulin resistance</topic><topic>Intestine, Small - metabolism</topic><topic>Lean body mass</topic><topic>Lipase</topic><topic>Lipids</topic><topic>Medicine</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Monoacylglycerol Lipases - genetics</topic><topic>Monoacylglycerol Lipases - metabolism</topic><topic>Mucosa</topic><topic>Neuropeptide Y - metabolism</topic><topic>Obesity</topic><topic>Obesity - genetics</topic><topic>Obesity - metabolism</topic><topic>Overexpression</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Polyunsaturated Alkamides - metabolism</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>Proteins</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Small intestine</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Triglycerides</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chon, Su-Hyoun</creatorcontrib><creatorcontrib>Douglass, John D</creatorcontrib><creatorcontrib>Zhou, Yin Xiu</creatorcontrib><creatorcontrib>Malik, Nashmia</creatorcontrib><creatorcontrib>Dixon, Joseph L</creatorcontrib><creatorcontrib>Brinker, Anita</creatorcontrib><creatorcontrib>Quadro, Loredana</creatorcontrib><creatorcontrib>Storch, Judith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chon, Su-Hyoun</au><au>Douglass, John D</au><au>Zhou, Yin Xiu</au><au>Malik, Nashmia</au><au>Dixon, Joseph L</au><au>Brinker, Anita</au><au>Quadro, Loredana</au><au>Storch, Judith</au><au>Luque, Raul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-08-28</date><risdate>2012</risdate><volume>7</volume><issue>8</issue><spage>e43962</spage><epage>e43962</epage><pages>e43962-e43962</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22937137</pmid><doi>10.1371/journal.pone.0043962</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-08, Vol.7 (8), p.e43962-e43962 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1326543584 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Adipose tissue Adiposity - physiology Agouti-Related Protein - metabolism Animals Appetite - physiology Arachidonic Acids - metabolism Basal Metabolism - physiology Biology Body fat Body mass Body weight Body weight gain Brain - metabolism Cannabinoids Diabetes Diet Eating - physiology Endocannabinoids Endocannabinoids - metabolism Energy Energy balance Energy expenditure Energy Metabolism - physiology Enzymes Fatty acids Food intake Gene expression Genetic aspects Genomes Glycerides - metabolism Glycerol Insulin resistance Intestine, Small - metabolism Lean body mass Lipase Lipids Medicine Metabolic rate Metabolism Mice Mice, Transgenic Monoacylglycerol Lipases - genetics Monoacylglycerol Lipases - metabolism Mucosa Neuropeptide Y - metabolism Obesity Obesity - genetics Obesity - metabolism Overexpression Phenotypes Physiological aspects Polyunsaturated Alkamides - metabolism Pro-Opiomelanocortin - metabolism Proteins Receptor, Cannabinoid, CB1 - metabolism Risk factors Rodents Small intestine Transgenic animals Transgenic mice Triglycerides Triglycerides - metabolism |
title | Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Over-expression%20of%20monoacylglycerol%20lipase%20(MGL)%20in%20small%20intestine%20alters%20endocannabinoid%20levels%20and%20whole%20body%20energy%20balance,%20resulting%20in%20obesity&rft.jtitle=PloS%20one&rft.au=Chon,%20Su-Hyoun&rft.date=2012-08-28&rft.volume=7&rft.issue=8&rft.spage=e43962&rft.epage=e43962&rft.pages=e43962-e43962&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0043962&rft_dat=%3Cgale_plos_%3EA498244655%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c659t-437ed5aa4e0c372fad5c82ad02ff6e181fbb0d1584c5bf4eddc443ddb7c733103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1326543584&rft_id=info:pmid/22937137&rft_galeid=A498244655&rfr_iscdi=true |