Loading…

Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypothalamic-pituitary-adrenal axis inhibition in fetal rats

Epidemiological investigations have shown that fetuses with intrauterine growth retardation (IUGR) are susceptible to adult metabolic syndrome. Clinical investigations and experiments have demonstrated that caffeine is a definite inducer of IUGR, as children who ingest caffeine-containing food or dr...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-09, Vol.7 (9), p.e44497-e44497
Main Authors: Xu, Dan, Zhang, Benjian, Liang, Gai, Ping, Jie, Kou, Hao, Li, Xiaojun, Xiong, Jie, Hu, Dongcai, Chen, Liaobin, Magdalou, Jacques, Wang, Hui
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epidemiological investigations have shown that fetuses with intrauterine growth retardation (IUGR) are susceptible to adult metabolic syndrome. Clinical investigations and experiments have demonstrated that caffeine is a definite inducer of IUGR, as children who ingest caffeine-containing food or drinks are highly susceptible to adult obesity and hypertension. Our goals for this study were to investigate the effect of prenatal caffeine ingestion on the functional development of the fetal hippocampus and the hypothalamic-pituitary-adrenal (HPA) axis and to clarify an intrauterine HPA axis-associated neuroendocrine alteration induced by caffeine. Pregnant Wistar rats were intragastrically administered 20, 60, and 180 mg/kg · d caffeine from gestational days 11-20. The results show that prenatal caffeine ingestion significantly decreased the expression of fetal hypothalamus corticotrophin-releasing hormone. The fetal adrenal cortex changed into slight and the expression of fetal adrenal steroid acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc), as well as the level of fetal adrenal endogenous corticosterone (CORT), were all significantly decreased after caffeine treatment. Moreover, caffeine ingestion significantly increased the levels of maternal and fetal blood CORT and decreased the expression of placental 11β-hydroxysteroid dehydrogenase-2 (11β-HSD-2). Additionally, both in vivo and in vitro studies show that caffeine can downregulate the expression of fetal hippocampal 11β-HSD-2, promote the expression of 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor (GR), and enhance DNA methylation within the hippocampal 11β-HSD-2 promoter. These results suggest that prenatal caffeine ingestion inhibits the development of the fetal HPA axis, which may be associated with the fetal overexposure to maternal glucocorticoid and activated glucocorticoid metabolism in the fetal hippocampus. These results will be beneficial in elucidating the developmental toxicity of caffeine and in exploring the fetal origin of adult HPA axis dysfunction and metabolic syndrome susceptibility for offspring with IUGR induced by caffeine.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0044497