Loading…
A mathematical framework for combining decisions of multiple experts toward accurate and remote diagnosis of malaria using tele-microscopy
We propose a methodology for digitally fusing diagnostic decisions made by multiple medical experts in order to improve accuracy of diagnosis. Toward this goal, we report an experimental study involving nine experts, where each one was given more than 8,000 digital microscopic images of individual h...
Saved in:
Published in: | PloS one 2012-10, Vol.7 (10), p.e46192-e46192 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a methodology for digitally fusing diagnostic decisions made by multiple medical experts in order to improve accuracy of diagnosis. Toward this goal, we report an experimental study involving nine experts, where each one was given more than 8,000 digital microscopic images of individual human red blood cells and asked to identify malaria infected cells. The results of this experiment reveal that even highly trained medical experts are not always self-consistent in their diagnostic decisions and that there exists a fair level of disagreement among experts, even for binary decisions (i.e., infected vs. uninfected). To tackle this general medical diagnosis problem, we propose a probabilistic algorithm to fuse the decisions made by trained medical experts to robustly achieve higher levels of accuracy when compared to individual experts making such decisions. By modelling the decisions of experts as a three component mixture model and solving for the underlying parameters using the Expectation Maximisation algorithm, we demonstrate the efficacy of our approach which significantly improves the overall diagnostic accuracy of malaria infected cells. Additionally, we present a mathematical framework for performing 'slide-level' diagnosis by using individual 'cell-level' diagnosis data, shedding more light on the statistical rules that should govern the routine practice in examination of e.g., thin blood smear samples. This framework could be generalized for various other tele-pathology needs, and can be used by trained experts within an efficient tele-medicine platform. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0046192 |