Loading…

APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival

Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biologica...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-10, Vol.7 (10), p.e47462
Main Authors: Cardoso, Angelo A, Jiang, Yanlin, Luo, Meihua, Reed, April M, Shahda, Safi, He, Ying, Maitra, Anirban, Kelley, Mark R, Fishel, Melissa L
Format: Article
Language:English
Subjects:
DNA
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-f3e1c4ce08dd5a790ff887840756d13f78c031cea33b3cff78781b3c8ca1be1e3
cites
container_end_page
container_issue 10
container_start_page e47462
container_title PloS one
container_volume 7
creator Cardoso, Angelo A
Jiang, Yanlin
Luo, Meihua
Reed, April M
Shahda, Safi
He, Ying
Maitra, Anirban
Kelley, Mark R
Fishel, Melissa L
description Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.
doi_str_mv 10.1371/journal.pone.0047462
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1326560470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498262238</galeid><doaj_id>oai_doaj_org_article_97d4faa79cf643f593fb6ae64175f2a0</doaj_id><sourcerecordid>A498262238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-f3e1c4ce08dd5a790ff887840756d13f78c031cea33b3cff78781b3c8ca1be1e3</originalsourceid><addsrcrecordid>eNqNk9GK1DAUhoso7rr6BqIBQfCis0nTNu2NMCyrDiys7I7ehkx60smQaWaTdHDfwYc2dbrrFBSkFzlJv_Pn5OecJHlN8IxQRs43tnedMLOd7WCGcc7yMnuSnJKaZmmZYfr0KD5JXni_wbigVVk-T04yiuscF_g0-Tn_eknOb0ClBDloeyMCeHS7nC8pCk50Xjq9C9rGm5CQQe91uEeia9CfvPRAN70waRCuhaC7FoFSMPBg7pHu1nqlg0c70UkHImiJZAzBIQnGIN-7vd4L8zJ5poTx8Gpcz5Jvny6XF1_Sq-vPi4v5VSpZUYVUUSAyl4CrpikEq7FSVcWqHLOibAhVrJKYEgmC0hWVKu5ZRWJUSUFWQICeJW8PujtjPR-N9JzQrCzK6CSOxOJANFZs-M7prXD33ArNfx9Y13Lh4jMM8Jo1uRKxDKnKnKqipmpVCihzwgqViUHr43hbv9pCI6GLxpqJ6PRPp9e8tXtOc8ZIUUWBd6OAs3c9-PCPkkeqFbEq3SkbxeRWe8nneV1lZZbRQWv2Fyp-DWy1jK2kdDyfJHyYJEQmwI_Qit57vri9-X_2-vuUfX_ErkGYsPbW9EOv-SmYH0DprPcO1KNzBPNhEh7c4MMk8HESYtqbY9cfkx5an_4C4AsETQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326560470</pqid></control><display><type>article</type><title>APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cardoso, Angelo A ; Jiang, Yanlin ; Luo, Meihua ; Reed, April M ; Shahda, Safi ; He, Ying ; Maitra, Anirban ; Kelley, Mark R ; Fishel, Melissa L</creator><contributor>Cordes, Nils</contributor><creatorcontrib>Cardoso, Angelo A ; Jiang, Yanlin ; Luo, Meihua ; Reed, April M ; Shahda, Safi ; He, Ying ; Maitra, Anirban ; Kelley, Mark R ; Fishel, Melissa L ; Cordes, Nils</creatorcontrib><description>Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0047462</identifier><identifier>PMID: 23094050</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenocarcinoma ; Adenocarcinoma - drug therapy ; Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; Aminosalicylic Acids - pharmacology ; Angiogenesis ; Apoptosis ; Apoptosis - drug effects ; Benzenesulfonates - pharmacology ; Benzoquinones - pharmacology ; Binding ; Biological activity ; Biology ; Bone cancer ; Brain cancer ; Cancer ; Cancer therapies ; Caspase ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Caspase-3 ; Cell Line, Tumor ; Cell migration ; Cell proliferation ; Cell Proliferation - drug effects ; Cell survival ; Cyclic S-Oxides - pharmacology ; Deoxyribonucleic acid ; DNA ; DNA binding ; DNA repair ; DNA-(Apurinic or Apyrimidinic Site) Lyase - antagonists &amp; inhibitors ; DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; Drug dosages ; Drug resistance ; Endonuclease ; Enzymes ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Genetic aspects ; Growth factors ; Hematology ; Humans ; Medicine ; Molecular Targeted Therapy ; Oncology ; Oxidation-Reduction ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; Pediatrics ; Pharmacology ; Propionates - pharmacology ; Proteins ; Redox properties ; RNA, Small Interfering - genetics ; Rodents ; Signal processing ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; Stat3 protein ; STAT3 Transcription Factor - antagonists &amp; inhibitors ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; Survival ; Synergism ; Toxicology ; Transcription (Genetics) ; Transcription factors ; Transcription, Genetic - drug effects ; Viability</subject><ispartof>PloS one, 2012-10, Vol.7 (10), p.e47462</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Cardoso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Cardoso et al 2012 Cardoso et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-f3e1c4ce08dd5a790ff887840756d13f78c031cea33b3cff78781b3c8ca1be1e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1326560470/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1326560470?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23094050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cordes, Nils</contributor><creatorcontrib>Cardoso, Angelo A</creatorcontrib><creatorcontrib>Jiang, Yanlin</creatorcontrib><creatorcontrib>Luo, Meihua</creatorcontrib><creatorcontrib>Reed, April M</creatorcontrib><creatorcontrib>Shahda, Safi</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Maitra, Anirban</creatorcontrib><creatorcontrib>Kelley, Mark R</creatorcontrib><creatorcontrib>Fishel, Melissa L</creatorcontrib><title>APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>Aminosalicylic Acids - pharmacology</subject><subject>Angiogenesis</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Benzenesulfonates - pharmacology</subject><subject>Benzoquinones - pharmacology</subject><subject>Binding</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Bone cancer</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Caspase</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase-3</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell survival</subject><subject>Cyclic S-Oxides - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding</subject><subject>DNA repair</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - antagonists &amp; inhibitors</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>Drug dosages</subject><subject>Drug resistance</subject><subject>Endonuclease</subject><subject>Enzymes</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic aspects</subject><subject>Growth factors</subject><subject>Hematology</subject><subject>Humans</subject><subject>Medicine</subject><subject>Molecular Targeted Therapy</subject><subject>Oncology</subject><subject>Oxidation-Reduction</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pediatrics</subject><subject>Pharmacology</subject><subject>Propionates - pharmacology</subject><subject>Proteins</subject><subject>Redox properties</subject><subject>RNA, Small Interfering - genetics</subject><subject>Rodents</subject><subject>Signal processing</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - antagonists &amp; inhibitors</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>Survival</subject><subject>Synergism</subject><subject>Toxicology</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Viability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9GK1DAUhoso7rr6BqIBQfCis0nTNu2NMCyrDiys7I7ehkx60smQaWaTdHDfwYc2dbrrFBSkFzlJv_Pn5OecJHlN8IxQRs43tnedMLOd7WCGcc7yMnuSnJKaZmmZYfr0KD5JXni_wbigVVk-T04yiuscF_g0-Tn_eknOb0ClBDloeyMCeHS7nC8pCk50Xjq9C9rGm5CQQe91uEeia9CfvPRAN70waRCuhaC7FoFSMPBg7pHu1nqlg0c70UkHImiJZAzBIQnGIN-7vd4L8zJ5poTx8Gpcz5Jvny6XF1_Sq-vPi4v5VSpZUYVUUSAyl4CrpikEq7FSVcWqHLOibAhVrJKYEgmC0hWVKu5ZRWJUSUFWQICeJW8PujtjPR-N9JzQrCzK6CSOxOJANFZs-M7prXD33ArNfx9Y13Lh4jMM8Jo1uRKxDKnKnKqipmpVCihzwgqViUHr43hbv9pCI6GLxpqJ6PRPp9e8tXtOc8ZIUUWBd6OAs3c9-PCPkkeqFbEq3SkbxeRWe8nneV1lZZbRQWv2Fyp-DWy1jK2kdDyfJHyYJEQmwI_Qit57vri9-X_2-vuUfX_ErkGYsPbW9EOv-SmYH0DprPcO1KNzBPNhEh7c4MMk8HESYtqbY9cfkx5an_4C4AsETQ</recordid><startdate>20121019</startdate><enddate>20121019</enddate><creator>Cardoso, Angelo A</creator><creator>Jiang, Yanlin</creator><creator>Luo, Meihua</creator><creator>Reed, April M</creator><creator>Shahda, Safi</creator><creator>He, Ying</creator><creator>Maitra, Anirban</creator><creator>Kelley, Mark R</creator><creator>Fishel, Melissa L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121019</creationdate><title>APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival</title><author>Cardoso, Angelo A ; Jiang, Yanlin ; Luo, Meihua ; Reed, April M ; Shahda, Safi ; He, Ying ; Maitra, Anirban ; Kelley, Mark R ; Fishel, Melissa L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-f3e1c4ce08dd5a790ff887840756d13f78c031cea33b3cff78781b3c8ca1be1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>Aminosalicylic Acids - pharmacology</topic><topic>Angiogenesis</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Benzenesulfonates - pharmacology</topic><topic>Benzoquinones - pharmacology</topic><topic>Binding</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Bone cancer</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Caspase</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase-3</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell survival</topic><topic>Cyclic S-Oxides - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding</topic><topic>DNA repair</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - antagonists &amp; inhibitors</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>Drug dosages</topic><topic>Drug resistance</topic><topic>Endonuclease</topic><topic>Enzymes</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic aspects</topic><topic>Growth factors</topic><topic>Hematology</topic><topic>Humans</topic><topic>Medicine</topic><topic>Molecular Targeted Therapy</topic><topic>Oncology</topic><topic>Oxidation-Reduction</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pediatrics</topic><topic>Pharmacology</topic><topic>Propionates - pharmacology</topic><topic>Proteins</topic><topic>Redox properties</topic><topic>RNA, Small Interfering - genetics</topic><topic>Rodents</topic><topic>Signal processing</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - antagonists &amp; inhibitors</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>Survival</topic><topic>Synergism</topic><topic>Toxicology</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardoso, Angelo A</creatorcontrib><creatorcontrib>Jiang, Yanlin</creatorcontrib><creatorcontrib>Luo, Meihua</creatorcontrib><creatorcontrib>Reed, April M</creatorcontrib><creatorcontrib>Shahda, Safi</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Maitra, Anirban</creatorcontrib><creatorcontrib>Kelley, Mark R</creatorcontrib><creatorcontrib>Fishel, Melissa L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso, Angelo A</au><au>Jiang, Yanlin</au><au>Luo, Meihua</au><au>Reed, April M</au><au>Shahda, Safi</au><au>He, Ying</au><au>Maitra, Anirban</au><au>Kelley, Mark R</au><au>Fishel, Melissa L</au><au>Cordes, Nils</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-10-19</date><risdate>2012</risdate><volume>7</volume><issue>10</issue><spage>e47462</spage><pages>e47462-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3-APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3-APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23094050</pmid><doi>10.1371/journal.pone.0047462</doi><tpages>e47462</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-10, Vol.7 (10), p.e47462
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1326560470
source Publicly Available Content Database; PubMed Central
subjects Adenocarcinoma
Adenocarcinoma - drug therapy
Adenocarcinoma - genetics
Adenocarcinoma - metabolism
Adenocarcinoma - pathology
Aminosalicylic Acids - pharmacology
Angiogenesis
Apoptosis
Apoptosis - drug effects
Benzenesulfonates - pharmacology
Benzoquinones - pharmacology
Binding
Biological activity
Biology
Bone cancer
Brain cancer
Cancer
Cancer therapies
Caspase
Caspase 3 - genetics
Caspase 3 - metabolism
Caspase-3
Cell Line, Tumor
Cell migration
Cell proliferation
Cell Proliferation - drug effects
Cell survival
Cyclic S-Oxides - pharmacology
Deoxyribonucleic acid
DNA
DNA binding
DNA repair
DNA-(Apurinic or Apyrimidinic Site) Lyase - antagonists & inhibitors
DNA-(Apurinic or Apyrimidinic Site) Lyase - genetics
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
Drug dosages
Drug resistance
Endonuclease
Enzymes
Gene Expression Regulation, Neoplastic - drug effects
Gene Knockdown Techniques
Genetic aspects
Growth factors
Hematology
Humans
Medicine
Molecular Targeted Therapy
Oncology
Oxidation-Reduction
Pancreatic cancer
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Pediatrics
Pharmacology
Propionates - pharmacology
Proteins
Redox properties
RNA, Small Interfering - genetics
Rodents
Signal processing
Signal transduction
Signal Transduction - drug effects
Signaling
Stat3 protein
STAT3 Transcription Factor - antagonists & inhibitors
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Survival
Synergism
Toxicology
Transcription (Genetics)
Transcription factors
Transcription, Genetic - drug effects
Viability
title APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APE1/Ref-1%20regulates%20STAT3%20transcriptional%20activity%20and%20APE1/Ref-1-STAT3%20dual-targeting%20effectively%20inhibits%20pancreatic%20cancer%20cell%20survival&rft.jtitle=PloS%20one&rft.au=Cardoso,%20Angelo%20A&rft.date=2012-10-19&rft.volume=7&rft.issue=10&rft.spage=e47462&rft.pages=e47462-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0047462&rft_dat=%3Cgale_plos_%3EA498262238%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-f3e1c4ce08dd5a790ff887840756d13f78c031cea33b3cff78781b3c8ca1be1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1326560470&rft_id=info:pmid/23094050&rft_galeid=A498262238&rfr_iscdi=true