Loading…
A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats
Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory b...
Saved in:
Published in: | PloS one 2012-12, Vol.7 (12), p.e51227-e51227 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3 |
container_end_page | e51227 |
container_issue | 12 |
container_start_page | e51227 |
container_title | PloS one |
container_volume | 7 |
creator | Aimé, Pascaline Hegoburu, Chloé Jaillard, Tristan Degletagne, Cyril Garcia, Samuel Messaoudi, Belkacem Thevenet, Marc Lorsignol, Anne Duchamp, Claude Mouly, Anne-Marie Julliard, Andrée Karyn |
description | Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors. |
doi_str_mv | 10.1371/journal.pone.0051227 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327136686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083547</galeid><doaj_id>oai_doaj_org_article_35f30cb5dfa940ff85f3db773098fe62</doaj_id><sourcerecordid>A477083547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3</originalsourceid><addsrcrecordid>eNqNk99qFDEUxgdRbK2-geiAIArumj87k5kbYSlqC4WCFm9DJjnZSckmazKzuK_jk3q2uy3d0guZi5yc-X3fmZzJKYrXlEwpF_TzdRxTUH66igGmhFSUMfGkOKYtZ5OaEf70XnxUvMj5GiHe1PXz4ohxVtFZTY-Lv_Ny1W-yiz4unFa-dEEnUBnKaDHOo3cB13LoMeOt0kNMm7IbfVca2JEZowH04GLYilTpQaUAplRrSNmtUWhiKlXATBe9yz1KbIzmJj9xwYwa6RyctS4syg56tXaowLJJDfll8cwqn-HVfj0prr59vTo9m1xcfj8_nV9MtGirYdISXgEFDZR0ZNYRMFSbTqvGcs5IC1bUVDM-o4QSbVlV6coYbUSjFLWi4yfF253tyscs993NknImKK_rpkbifEeYqK7lKrmlShsZlZM3iZgWUqXBaQ-SV5YT3VXGqnZGrG1wbzohOGkbCzVDry_7amO3BKMhDEn5A9PDN8H1chHX6MxYXbVo8Gln0D-Qnc0vJOayAUmIqIVoqjVF_MO-Xoq_R8iDXLqswXsVII54TCY4JzVtK0TfPUAfb8aeWig8rws24mfqramcz4QgDa9mAqnpIxQ-BpZO4821DvMHgo8HAmQG-DMs1JizPP_54__Zy1-H7Pt7bA_KD32Oftze2nwIznagTjHnBPauuZTI7eDddkNuB0_uBw9lb-7_zzvR7aTxf8RfKzg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327136686</pqid></control><display><type>article</type><title>A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Aimé, Pascaline ; Hegoburu, Chloé ; Jaillard, Tristan ; Degletagne, Cyril ; Garcia, Samuel ; Messaoudi, Belkacem ; Thevenet, Marc ; Lorsignol, Anne ; Duchamp, Claude ; Mouly, Anne-Marie ; Julliard, Andrée Karyn</creator><contributor>Chowen, Julie A.</contributor><creatorcontrib>Aimé, Pascaline ; Hegoburu, Chloé ; Jaillard, Tristan ; Degletagne, Cyril ; Garcia, Samuel ; Messaoudi, Belkacem ; Thevenet, Marc ; Lorsignol, Anne ; Duchamp, Claude ; Mouly, Anne-Marie ; Julliard, Andrée Karyn ; Chowen, Julie A.</creatorcontrib><description>Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0051227</identifier><identifier>PMID: 23251461</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetic acid ; Animals ; Aversion ; Avoidance Learning ; Base Sequence ; Behavior, Animal ; Binding sites ; Biodiversity and Ecology ; Biology ; Blood Glucose - metabolism ; Blood-brain barrier ; Body weight ; Brain ; Conditioning ; Diabetes mellitus ; DNA Primers ; Energy balance ; Environmental Sciences ; Food ; Food intake ; Glucose ; Homeostasis ; Information processing ; Injection ; Injections, Intraventricular ; Insulin ; Insulin - administration & dosage ; Insulin - blood ; Insulin - metabolism ; Insulin receptors ; Isoamyl acetate ; Kinases ; Male ; Metabolic disorders ; Mitral cells ; Neurons ; Neurosciences ; Obesity ; Odor ; Odorants ; Odors ; Olfaction ; Olfactory bulb ; Olfactory Bulb - metabolism ; Phosphorylation ; Physiological aspects ; Physiology ; Potassium ; Rats ; Rats, Wistar ; Receptors ; Regulatory mechanisms (biology) ; Rodents ; Senses ; Smell ; Sniffing behavior</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e51227-e51227</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Aimé et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2012 Aimé et al 2012 Aimé et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3</citedby><cites>FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3</cites><orcidid>0000-0001-6389-9779 ; 0000-0002-9005-8788 ; 0000-0001-7662-1872 ; 0000-0002-5363-2381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1327136686/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1327136686?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25735,27906,27907,36994,36995,44572,53773,53775,74876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23251461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/halsde-00767785$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Chowen, Julie A.</contributor><creatorcontrib>Aimé, Pascaline</creatorcontrib><creatorcontrib>Hegoburu, Chloé</creatorcontrib><creatorcontrib>Jaillard, Tristan</creatorcontrib><creatorcontrib>Degletagne, Cyril</creatorcontrib><creatorcontrib>Garcia, Samuel</creatorcontrib><creatorcontrib>Messaoudi, Belkacem</creatorcontrib><creatorcontrib>Thevenet, Marc</creatorcontrib><creatorcontrib>Lorsignol, Anne</creatorcontrib><creatorcontrib>Duchamp, Claude</creatorcontrib><creatorcontrib>Mouly, Anne-Marie</creatorcontrib><creatorcontrib>Julliard, Andrée Karyn</creatorcontrib><title>A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.</description><subject>Acetic acid</subject><subject>Animals</subject><subject>Aversion</subject><subject>Avoidance Learning</subject><subject>Base Sequence</subject><subject>Behavior, Animal</subject><subject>Binding sites</subject><subject>Biodiversity and Ecology</subject><subject>Biology</subject><subject>Blood Glucose - metabolism</subject><subject>Blood-brain barrier</subject><subject>Body weight</subject><subject>Brain</subject><subject>Conditioning</subject><subject>Diabetes mellitus</subject><subject>DNA Primers</subject><subject>Energy balance</subject><subject>Environmental Sciences</subject><subject>Food</subject><subject>Food intake</subject><subject>Glucose</subject><subject>Homeostasis</subject><subject>Information processing</subject><subject>Injection</subject><subject>Injections, Intraventricular</subject><subject>Insulin</subject><subject>Insulin - administration & dosage</subject><subject>Insulin - blood</subject><subject>Insulin - metabolism</subject><subject>Insulin receptors</subject><subject>Isoamyl acetate</subject><subject>Kinases</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Mitral cells</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Obesity</subject><subject>Odor</subject><subject>Odorants</subject><subject>Odors</subject><subject>Olfaction</subject><subject>Olfactory bulb</subject><subject>Olfactory Bulb - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Potassium</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors</subject><subject>Regulatory mechanisms (biology)</subject><subject>Rodents</subject><subject>Senses</subject><subject>Smell</subject><subject>Sniffing behavior</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99qFDEUxgdRbK2-geiAIArumj87k5kbYSlqC4WCFm9DJjnZSckmazKzuK_jk3q2uy3d0guZi5yc-X3fmZzJKYrXlEwpF_TzdRxTUH66igGmhFSUMfGkOKYtZ5OaEf70XnxUvMj5GiHe1PXz4ohxVtFZTY-Lv_Ny1W-yiz4unFa-dEEnUBnKaDHOo3cB13LoMeOt0kNMm7IbfVca2JEZowH04GLYilTpQaUAplRrSNmtUWhiKlXATBe9yz1KbIzmJj9xwYwa6RyctS4syg56tXaowLJJDfll8cwqn-HVfj0prr59vTo9m1xcfj8_nV9MtGirYdISXgEFDZR0ZNYRMFSbTqvGcs5IC1bUVDM-o4QSbVlV6coYbUSjFLWi4yfF253tyscs993NknImKK_rpkbifEeYqK7lKrmlShsZlZM3iZgWUqXBaQ-SV5YT3VXGqnZGrG1wbzohOGkbCzVDry_7amO3BKMhDEn5A9PDN8H1chHX6MxYXbVo8Gln0D-Qnc0vJOayAUmIqIVoqjVF_MO-Xoq_R8iDXLqswXsVII54TCY4JzVtK0TfPUAfb8aeWig8rws24mfqramcz4QgDa9mAqnpIxQ-BpZO4821DvMHgo8HAmQG-DMs1JizPP_54__Zy1-H7Pt7bA_KD32Oftze2nwIznagTjHnBPauuZTI7eDddkNuB0_uBw9lb-7_zzvR7aTxf8RfKzg</recordid><startdate>20121214</startdate><enddate>20121214</enddate><creator>Aimé, Pascaline</creator><creator>Hegoburu, Chloé</creator><creator>Jaillard, Tristan</creator><creator>Degletagne, Cyril</creator><creator>Garcia, Samuel</creator><creator>Messaoudi, Belkacem</creator><creator>Thevenet, Marc</creator><creator>Lorsignol, Anne</creator><creator>Duchamp, Claude</creator><creator>Mouly, Anne-Marie</creator><creator>Julliard, Andrée Karyn</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6389-9779</orcidid><orcidid>https://orcid.org/0000-0002-9005-8788</orcidid><orcidid>https://orcid.org/0000-0001-7662-1872</orcidid><orcidid>https://orcid.org/0000-0002-5363-2381</orcidid></search><sort><creationdate>20121214</creationdate><title>A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats</title><author>Aimé, Pascaline ; Hegoburu, Chloé ; Jaillard, Tristan ; Degletagne, Cyril ; Garcia, Samuel ; Messaoudi, Belkacem ; Thevenet, Marc ; Lorsignol, Anne ; Duchamp, Claude ; Mouly, Anne-Marie ; Julliard, Andrée Karyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetic acid</topic><topic>Animals</topic><topic>Aversion</topic><topic>Avoidance Learning</topic><topic>Base Sequence</topic><topic>Behavior, Animal</topic><topic>Binding sites</topic><topic>Biodiversity and Ecology</topic><topic>Biology</topic><topic>Blood Glucose - metabolism</topic><topic>Blood-brain barrier</topic><topic>Body weight</topic><topic>Brain</topic><topic>Conditioning</topic><topic>Diabetes mellitus</topic><topic>DNA Primers</topic><topic>Energy balance</topic><topic>Environmental Sciences</topic><topic>Food</topic><topic>Food intake</topic><topic>Glucose</topic><topic>Homeostasis</topic><topic>Information processing</topic><topic>Injection</topic><topic>Injections, Intraventricular</topic><topic>Insulin</topic><topic>Insulin - administration & dosage</topic><topic>Insulin - blood</topic><topic>Insulin - metabolism</topic><topic>Insulin receptors</topic><topic>Isoamyl acetate</topic><topic>Kinases</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Mitral cells</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Obesity</topic><topic>Odor</topic><topic>Odorants</topic><topic>Odors</topic><topic>Olfaction</topic><topic>Olfactory bulb</topic><topic>Olfactory Bulb - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Potassium</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors</topic><topic>Regulatory mechanisms (biology)</topic><topic>Rodents</topic><topic>Senses</topic><topic>Smell</topic><topic>Sniffing behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aimé, Pascaline</creatorcontrib><creatorcontrib>Hegoburu, Chloé</creatorcontrib><creatorcontrib>Jaillard, Tristan</creatorcontrib><creatorcontrib>Degletagne, Cyril</creatorcontrib><creatorcontrib>Garcia, Samuel</creatorcontrib><creatorcontrib>Messaoudi, Belkacem</creatorcontrib><creatorcontrib>Thevenet, Marc</creatorcontrib><creatorcontrib>Lorsignol, Anne</creatorcontrib><creatorcontrib>Duchamp, Claude</creatorcontrib><creatorcontrib>Mouly, Anne-Marie</creatorcontrib><creatorcontrib>Julliard, Andrée Karyn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aimé, Pascaline</au><au>Hegoburu, Chloé</au><au>Jaillard, Tristan</au><au>Degletagne, Cyril</au><au>Garcia, Samuel</au><au>Messaoudi, Belkacem</au><au>Thevenet, Marc</au><au>Lorsignol, Anne</au><au>Duchamp, Claude</au><au>Mouly, Anne-Marie</au><au>Julliard, Andrée Karyn</au><au>Chowen, Julie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-14</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e51227</spage><epage>e51227</epage><pages>e51227-e51227</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23251461</pmid><doi>10.1371/journal.pone.0051227</doi><tpages>e51227</tpages><orcidid>https://orcid.org/0000-0001-6389-9779</orcidid><orcidid>https://orcid.org/0000-0002-9005-8788</orcidid><orcidid>https://orcid.org/0000-0001-7662-1872</orcidid><orcidid>https://orcid.org/0000-0002-5363-2381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-12, Vol.7 (12), p.e51227-e51227 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327136686 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acetic acid Animals Aversion Avoidance Learning Base Sequence Behavior, Animal Binding sites Biodiversity and Ecology Biology Blood Glucose - metabolism Blood-brain barrier Body weight Brain Conditioning Diabetes mellitus DNA Primers Energy balance Environmental Sciences Food Food intake Glucose Homeostasis Information processing Injection Injections, Intraventricular Insulin Insulin - administration & dosage Insulin - blood Insulin - metabolism Insulin receptors Isoamyl acetate Kinases Male Metabolic disorders Mitral cells Neurons Neurosciences Obesity Odor Odorants Odors Olfaction Olfactory bulb Olfactory Bulb - metabolism Phosphorylation Physiological aspects Physiology Potassium Rats Rats, Wistar Receptors Regulatory mechanisms (biology) Rodents Senses Smell Sniffing behavior |
title | A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physiological%20increase%20of%20insulin%20in%20the%20olfactory%20bulb%20decreases%20detection%20of%20a%20learned%20aversive%20odor%20and%20abolishes%20food%20odor-induced%20sniffing%20behavior%20in%20rats&rft.jtitle=PloS%20one&rft.au=Aim%C3%A9,%20Pascaline&rft.date=2012-12-14&rft.volume=7&rft.issue=12&rft.spage=e51227&rft.epage=e51227&rft.pages=e51227-e51227&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0051227&rft_dat=%3Cgale_plos_%3EA477083547%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c795t-9035e1ece10b04b0ed1cdbca8f33209ef761c2341010cf255c5ddcd78aa1f7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1327136686&rft_id=info:pmid/23251461&rft_galeid=A477083547&rfr_iscdi=true |