Loading…

Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation

The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-12, Vol.7 (12), p.e52446
Main Authors: Salame, Tomer M, Knop, Doriv, Levinson, Dana, Mabjeesh, Sameer J, Yarden, Oded, Hadar, Yitzhak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates. As Mn(2+) supplement to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds and lignin, we examined the effect of Mn(2+) on the expression profile of the MnP gene family. In P. ostreatus (monokaryon PC9), mnp4 was found to be the predominantly expressed mnp in Mn(2+)-deficient media, whereas strongly repressed (to approximately 1%) in Mn(2+)-supplemented media. Accordingly, in-vitro Mn(2+)-independent activity was found to be negligible. We tested whether release of mnp4 from Mn(2+) repression alters the activity of the ligninolytic system. A transformant over-expressing mnp4 (designated OEmnp4) under the control of the β-tubulin promoter was produced. Now, despite the presence of Mn(2+) in the medium, OEmnp4 produced mnp4 transcript as well as VP activity as early as 4 days after inoculation. The level of expression was constant throughout 10 days of incubation (about 0.4-fold relative to β-tubulin) and the activity was comparable to the typical activity of PC9 in Mn(2+)-deficient media. In-vivo decolorization of the azo dyes Orange II, Reactive Black 5, and Amaranth by OEmnp4 preceded that of PC9. OEmnp4 and PC9 were grown for 2 weeks under solid-state fermentation conditions on cotton stalks as a lignocellulosic substrate. [(14)C]-lignin mineralization, in-vitro dry matter digestibility, and neutral detergent fiber digestibility were found to be significantly higher (about 25%) in OEmnp4-fermented substrate, relative to PC9. We conclude that releasing Mn(2+) suppression of VP4 by over-expression of the mnp4 gene in P. ostreatus improved its ligninolytic functionality.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0052446