Loading…
Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygen...
Saved in:
Published in: | PloS one 2012-12, Vol.7 (12), p.e52974-e52974 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3 |
container_end_page | e52974 |
container_issue | 12 |
container_start_page | e52974 |
container_title | PloS one |
container_volume | 7 |
creator | Kapralov, Maxim V Smith, J Andrew C Filatov, Dmitry A |
description | Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C₃ enzyme. Specific amino-acids in Rubisco are associated with C₄ photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots.
We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C₄ plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C₄ Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C₄ plant groups, such as C₄ monocots, illustrating a striking parallelism in molecular evolution.
Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco. |
doi_str_mv | 10.1371/journal.pone.0052974 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1327199178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_baea4bdf6b544aa089e2661b56d88d6d</doaj_id><sourcerecordid>1273175171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3</originalsourceid><addsrcrecordid>eNptUltrFDEYDaLYdvUfiA740pddc5lcxgehLF6KBUH0OXyTfNNmySbrZKbQV_GX-kucdaelFSGQkJxzcr7DIeQFoysmNHuzyWOfIK52OeGKUskbXT8ix6wRfKk4FY_vnY_ISSmbCSSMUk_JERfcSC7MMfn8dWxDcbnC6xzHIeRUhVStf__8VeHog8tDeVtBmhbEmxJKlbvqbAs9pOEKHAJWBVMZqwhDfkaedBALPp_3Bfn-4f239aflxZeP5-uzi6WTXA1LzThj0nWSurozSmj0qDQaLrx01DvpjWwMCKMpOKMcNkBRainR-851KBbk1UF3F3Oxcw7FMsE1axqmzYQ4PyB8ho3d9WFyfGMzBPv3IveXFvohuIi2BYS69Z1qZV0DUNMgV4q1UnljvPKT1rv5t7HdoneYhh7iA9GHLylc2ct8bYXkeh_-gpzOAn3-MWIZ7HZKHGOEhHmcfHMtmJZMswn6-h_o_6erDyjX51J67O7MMGr33bhl2X037NyNifby_iB3pNsyiD-3oblB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327199178</pqid></control><display><type>article</type><title>Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (PMC)</source><creator>Kapralov, Maxim V ; Smith, J Andrew C ; Filatov, Dmitry A</creator><contributor>Joly, Simon</contributor><creatorcontrib>Kapralov, Maxim V ; Smith, J Andrew C ; Filatov, Dmitry A ; Joly, Simon</creatorcontrib><description>Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C₃ enzyme. Specific amino-acids in Rubisco are associated with C₄ photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots.
We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C₄ plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C₄ Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C₄ plant groups, such as C₄ monocots, illustrating a striking parallelism in molecular evolution.
Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0052974</identifier><identifier>PMID: 23285238</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Adaptation ; Alanine ; Amaranthaceae ; Amaranthaceae - enzymology ; Amaranthaceae - genetics ; Amino acids ; Anatomy & physiology ; Aquatic plants ; Base Sequence ; Bayesian analysis ; Biological evolution ; Biology ; Carbon dioxide ; Chenopodiaceae ; Cyperaceae ; Enzymes ; Evolution ; Evolution & development ; Evolution, Molecular ; Flowers & plants ; Genes, Plant - physiology ; Isoleucine ; Methionine ; Molecular biology ; Molecular evolution ; Molecular Sequence Data ; Oxygenase ; Photosynthesis ; Photosynthesis - genetics ; Phylogenetics ; Phylogeny ; Physiology ; Plant sciences ; Poaceae ; Positive selection ; Proteins ; RbcL gene ; Ribulose-1,5-bisphosphate ; Ribulose-bisphosphate carboxylase ; Ribulose-Bisphosphate Carboxylase - genetics ; Ribulosephosphates - metabolism ; Selection, Genetic ; Serine ; Sorghum ; Substrate specificity ; Substrates ; Temperature</subject><ispartof>PloS one, 2012-12, Vol.7 (12), p.e52974-e52974</ispartof><rights>2012 Kapralov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Kapralov et al 2012 Kapralov et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3</citedby><cites>FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1327199178/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1327199178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23285238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Joly, Simon</contributor><creatorcontrib>Kapralov, Maxim V</creatorcontrib><creatorcontrib>Smith, J Andrew C</creatorcontrib><creatorcontrib>Filatov, Dmitry A</creatorcontrib><title>Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C₃ enzyme. Specific amino-acids in Rubisco are associated with C₄ photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots.
We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C₄ plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C₄ Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C₄ plant groups, such as C₄ monocots, illustrating a striking parallelism in molecular evolution.
Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco.</description><subject>Acids</subject><subject>Adaptation</subject><subject>Alanine</subject><subject>Amaranthaceae</subject><subject>Amaranthaceae - enzymology</subject><subject>Amaranthaceae - genetics</subject><subject>Amino acids</subject><subject>Anatomy & physiology</subject><subject>Aquatic plants</subject><subject>Base Sequence</subject><subject>Bayesian analysis</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Carbon dioxide</subject><subject>Chenopodiaceae</subject><subject>Cyperaceae</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Evolution, Molecular</subject><subject>Flowers & plants</subject><subject>Genes, Plant - physiology</subject><subject>Isoleucine</subject><subject>Methionine</subject><subject>Molecular biology</subject><subject>Molecular evolution</subject><subject>Molecular Sequence Data</subject><subject>Oxygenase</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Plant sciences</subject><subject>Poaceae</subject><subject>Positive selection</subject><subject>Proteins</subject><subject>RbcL gene</subject><subject>Ribulose-1,5-bisphosphate</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Ribulose-Bisphosphate Carboxylase - genetics</subject><subject>Ribulosephosphates - metabolism</subject><subject>Selection, Genetic</subject><subject>Serine</subject><subject>Sorghum</subject><subject>Substrate specificity</subject><subject>Substrates</subject><subject>Temperature</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUltrFDEYDaLYdvUfiA740pddc5lcxgehLF6KBUH0OXyTfNNmySbrZKbQV_GX-kucdaelFSGQkJxzcr7DIeQFoysmNHuzyWOfIK52OeGKUskbXT8ix6wRfKk4FY_vnY_ISSmbCSSMUk_JERfcSC7MMfn8dWxDcbnC6xzHIeRUhVStf__8VeHog8tDeVtBmhbEmxJKlbvqbAs9pOEKHAJWBVMZqwhDfkaedBALPp_3Bfn-4f239aflxZeP5-uzi6WTXA1LzThj0nWSurozSmj0qDQaLrx01DvpjWwMCKMpOKMcNkBRainR-851KBbk1UF3F3Oxcw7FMsE1axqmzYQ4PyB8ho3d9WFyfGMzBPv3IveXFvohuIi2BYS69Z1qZV0DUNMgV4q1UnljvPKT1rv5t7HdoneYhh7iA9GHLylc2ct8bYXkeh_-gpzOAn3-MWIZ7HZKHGOEhHmcfHMtmJZMswn6-h_o_6erDyjX51J67O7MMGr33bhl2X037NyNifby_iB3pNsyiD-3oblB</recordid><startdate>20121220</startdate><enddate>20121220</enddate><creator>Kapralov, Maxim V</creator><creator>Smith, J Andrew C</creator><creator>Filatov, Dmitry A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121220</creationdate><title>Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato</title><author>Kapralov, Maxim V ; Smith, J Andrew C ; Filatov, Dmitry A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acids</topic><topic>Adaptation</topic><topic>Alanine</topic><topic>Amaranthaceae</topic><topic>Amaranthaceae - enzymology</topic><topic>Amaranthaceae - genetics</topic><topic>Amino acids</topic><topic>Anatomy & physiology</topic><topic>Aquatic plants</topic><topic>Base Sequence</topic><topic>Bayesian analysis</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Carbon dioxide</topic><topic>Chenopodiaceae</topic><topic>Cyperaceae</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Evolution, Molecular</topic><topic>Flowers & plants</topic><topic>Genes, Plant - physiology</topic><topic>Isoleucine</topic><topic>Methionine</topic><topic>Molecular biology</topic><topic>Molecular evolution</topic><topic>Molecular Sequence Data</topic><topic>Oxygenase</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Plant sciences</topic><topic>Poaceae</topic><topic>Positive selection</topic><topic>Proteins</topic><topic>RbcL gene</topic><topic>Ribulose-1,5-bisphosphate</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Ribulose-Bisphosphate Carboxylase - genetics</topic><topic>Ribulosephosphates - metabolism</topic><topic>Selection, Genetic</topic><topic>Serine</topic><topic>Sorghum</topic><topic>Substrate specificity</topic><topic>Substrates</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapralov, Maxim V</creatorcontrib><creatorcontrib>Smith, J Andrew C</creatorcontrib><creatorcontrib>Filatov, Dmitry A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapralov, Maxim V</au><au>Smith, J Andrew C</au><au>Filatov, Dmitry A</au><au>Joly, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-12-20</date><risdate>2012</risdate><volume>7</volume><issue>12</issue><spage>e52974</spage><epage>e52974</epage><pages>e52974-e52974</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lower substrate specificity compared with the C₃ enzyme. Specific amino-acids in Rubisco are associated with C₄ photosynthesis in monocots, but it is not known whether selection has acted on Rubisco in a similar way in eudicots.
We investigated Rubisco evolution in Amaranthaceae sensu lato (including Chenopodiaceae), the third-largest family of C₄ plants, using phylogeny-based maximum likelihood and Bayesian methods to detect Darwinian selection on the chloroplast rbcL gene in a sample of 179 species. Two Rubisco residues, 281 and 309, were found to be under positive selection in C₄ Amaranthaceae with multiple parallel replacements of alanine by serine at position 281 and methionine by isoleucine at position 309. Remarkably, both amino-acids have been detected in other C₄ plant groups, such as C₄ monocots, illustrating a striking parallelism in molecular evolution.
Our findings illustrate how simple genetic changes can contribute to the evolution of photosynthesis and strengthen the hypothesis that parallel amino-acid replacements are associated with adaptive changes in Rubisco.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23285238</pmid><doi>10.1371/journal.pone.0052974</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-12, Vol.7 (12), p.e52974-e52974 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1327199178 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (PMC) |
subjects | Acids Adaptation Alanine Amaranthaceae Amaranthaceae - enzymology Amaranthaceae - genetics Amino acids Anatomy & physiology Aquatic plants Base Sequence Bayesian analysis Biological evolution Biology Carbon dioxide Chenopodiaceae Cyperaceae Enzymes Evolution Evolution & development Evolution, Molecular Flowers & plants Genes, Plant - physiology Isoleucine Methionine Molecular biology Molecular evolution Molecular Sequence Data Oxygenase Photosynthesis Photosynthesis - genetics Phylogenetics Phylogeny Physiology Plant sciences Poaceae Positive selection Proteins RbcL gene Ribulose-1,5-bisphosphate Ribulose-bisphosphate carboxylase Ribulose-Bisphosphate Carboxylase - genetics Ribulosephosphates - metabolism Selection, Genetic Serine Sorghum Substrate specificity Substrates Temperature |
title | Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rubisco%20evolution%20in%20C%E2%82%84%20eudicots:%20an%20analysis%20of%20Amaranthaceae%20sensu%20lato&rft.jtitle=PloS%20one&rft.au=Kapralov,%20Maxim%20V&rft.date=2012-12-20&rft.volume=7&rft.issue=12&rft.spage=e52974&rft.epage=e52974&rft.pages=e52974-e52974&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0052974&rft_dat=%3Cproquest_plos_%3E1273175171%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-712115cf50c4f8637ede67e823d5c0dc5d8598a3870ac86ce9a0e5755eddfcfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1327199178&rft_id=info:pmid/23285238&rfr_iscdi=true |