Loading…

The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation

Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regula...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-01, Vol.8 (1), p.e54472
Main Authors: Renga, Barbara, Mencarelli, Andrea, Cipriani, Sabrina, D'Amore, Claudio, Carino, Adriana, Bruno, Angela, Francisci, Daniela, Zampella, Angela, Distrutti, Eleonora, Fiorucci, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253
cites cdi_FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253
container_end_page
container_issue 1
container_start_page e54472
container_title PloS one
container_volume 8
creator Renga, Barbara
Mencarelli, Andrea
Cipriani, Sabrina
D'Amore, Claudio
Carino, Adriana
Bruno, Angela
Francisci, Daniela
Zampella, Angela
Distrutti, Eleonora
Fiorucci, Stefano
description Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regulates lipid metabolism and innate immunity. In this study we have investigated whether FXR gene expression/function in the intestine is modulated by TLRs. We found that in human monocytes activation of membrane TLRs (i.e. TLR2, 4, 5 and 6) downregulates, while activation of intracellular TLRs (i.e. TLR3, 7, 8 and 9) upregulates the expression of FXR and its target gene SHP, small heterodimer partner. This effect was TLR9-dependent and TNFα independent. Intestinal inflammation induced in mice by TNBS downregulates the intestinal expression of FXR in a TLR9-dependent manner. Protection against TNBS colitis by CpG, a TLR-9 ligand, was lost in FXR(-/-) mice. In contrast, activation of FXR rescued TLR9(-/-) and MyD88(-/-) mice from colitis. A putative IRF7 response element was detected in the FXR promoter and its functional characterization revealed that IRF7 is recruited on the FXR promoter under TLR9 stimulation. Intestinal expression of FXR is selectively modulated by TLR9. In addition to its role in regulating type-I interferons and innate antiviral immunity, IRF-7 a TLR9-dependent factor, regulates the expression of FXR, linking microbiota-sensing receptors to host's immune and metabolic signaling.
doi_str_mv 10.1371/journal.pone.0054472
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327825839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478883643</galeid><doaj_id>oai_doaj_org_article_95ac7d0acba945eca1cf9d528946926d</doaj_id><sourcerecordid>A478883643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLguBFx-arTW-EZXF1YGBhHMW7kKZJJ0PbzCbp4v5733G6yxQUpIWG9Dknb09PkrxG-QKREn3cudEPslvs3aAXec4oLfGT5BxVBGcFzsnTk_VZ8iKEHUCEF8Xz5AwTUuKSoPPEbrY6rW2nU6lskwY9BOfT65_r1IbU69vRet2kBvZs34-Dzrxux05G5-9BEe2djVaH1Jl0s1pnVWoHuKMO0cJssDSd7HsZrRteJs-M7IJ-NT0vku_XnzdXX7PVzZfl1eUqU0WFY0a0ymXNCoYML1Gd14YgQrHBOdMG85w2GMmqVJTWGFFFC86Bwg1FRnGJGblI3h59950LYkopCERwyTHjpAJieSQaJ3di720v_b1w0oo_G863QvpoVadFxaQqm1yqWlaUaSWRMlXDMK8oTFs04PVpOm2se90oPUQvu5np_M1gt6J1d4IwxuADweDdZODd7QjB_WPkiWolTAWxOjBTvQ1KXNKSc04KSoBa_IWCq9G9VdATAz96LvgwEwAT9a_YyjEEsfy2_n_25secfX_CbrXs4ja4bjz0IMxBegSVdyF4bR6TQ7k41PwhDXGouZhqDrI3p6k_ih56TX4D4Gr31A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327825839</pqid></control><display><type>article</type><title>The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Renga, Barbara ; Mencarelli, Andrea ; Cipriani, Sabrina ; D'Amore, Claudio ; Carino, Adriana ; Bruno, Angela ; Francisci, Daniela ; Zampella, Angela ; Distrutti, Eleonora ; Fiorucci, Stefano</creator><contributor>Boone, David L.</contributor><creatorcontrib>Renga, Barbara ; Mencarelli, Andrea ; Cipriani, Sabrina ; D'Amore, Claudio ; Carino, Adriana ; Bruno, Angela ; Francisci, Daniela ; Zampella, Angela ; Distrutti, Eleonora ; Fiorucci, Stefano ; Boone, David L.</creatorcontrib><description>Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regulates lipid metabolism and innate immunity. In this study we have investigated whether FXR gene expression/function in the intestine is modulated by TLRs. We found that in human monocytes activation of membrane TLRs (i.e. TLR2, 4, 5 and 6) downregulates, while activation of intracellular TLRs (i.e. TLR3, 7, 8 and 9) upregulates the expression of FXR and its target gene SHP, small heterodimer partner. This effect was TLR9-dependent and TNFα independent. Intestinal inflammation induced in mice by TNBS downregulates the intestinal expression of FXR in a TLR9-dependent manner. Protection against TNBS colitis by CpG, a TLR-9 ligand, was lost in FXR(-/-) mice. In contrast, activation of FXR rescued TLR9(-/-) and MyD88(-/-) mice from colitis. A putative IRF7 response element was detected in the FXR promoter and its functional characterization revealed that IRF7 is recruited on the FXR promoter under TLR9 stimulation. Intestinal expression of FXR is selectively modulated by TLR9. In addition to its role in regulating type-I interferons and innate antiviral immunity, IRF-7 a TLR9-dependent factor, regulates the expression of FXR, linking microbiota-sensing receptors to host's immune and metabolic signaling.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0054472</identifier><identifier>PMID: 23372731</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Animal tissues ; Animals ; Bile ; Biology ; Cell activation ; Cells, Cultured ; Colitis ; Colitis - chemically induced ; Colitis - genetics ; Colitis - immunology ; CpG islands ; Deoxycholic acid ; Gastroenterology ; Gene expression ; Gene Expression Regulation - drug effects ; Genes ; Genetic research ; Homeostasis ; Humans ; Immune response ; Immune system ; Immunity ; Immunity, Innate - genetics ; Inflammation ; Inflammatory bowel disease ; Innate immunity ; Interferon ; Interferon regulatory factor 7 ; Interferon Regulatory Factor-7 - genetics ; Interferon Regulatory Factor-7 - immunology ; Intestinal microflora ; Intestine ; Intestines - immunology ; Ligands ; Lipid metabolism ; Lipids ; Male ; Medicine ; Metabolism ; Mice ; Mice, Knockout ; Microbiota ; Microbiota (Symbiotic organisms) ; Microorganisms ; Monocytes ; Monocytes - cytology ; Monocytes - metabolism ; MyD88 protein ; Myeloid Differentiation Factor 88 - deficiency ; Myeloid Differentiation Factor 88 - genetics ; Myeloid Differentiation Factor 88 - immunology ; Oligodeoxyribonucleotides - pharmacology ; Physiological aspects ; Probiotics ; Promoter Regions, Genetic ; Proteins ; Receptors ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - immunology ; Receptors, Cytoplasmic and Nuclear - metabolism ; Rodents ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Signal Transduction - radiation effects ; Signaling ; TLR2 protein ; TLR3 protein ; TLR9 protein ; Toll-Like Receptor 9 - deficiency ; Toll-Like Receptor 9 - genetics ; Toll-Like Receptor 9 - immunology ; Toll-like receptors ; Transcription factors ; Trinitrobenzenesulfonic Acid ; Tumor Necrosis Factor-alpha - immunology ; Tumor necrosis factor-α</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e54472</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Renga et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Renga et al 2013 Renga et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253</citedby><cites>FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1327825839/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1327825839?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23372731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Boone, David L.</contributor><creatorcontrib>Renga, Barbara</creatorcontrib><creatorcontrib>Mencarelli, Andrea</creatorcontrib><creatorcontrib>Cipriani, Sabrina</creatorcontrib><creatorcontrib>D'Amore, Claudio</creatorcontrib><creatorcontrib>Carino, Adriana</creatorcontrib><creatorcontrib>Bruno, Angela</creatorcontrib><creatorcontrib>Francisci, Daniela</creatorcontrib><creatorcontrib>Zampella, Angela</creatorcontrib><creatorcontrib>Distrutti, Eleonora</creatorcontrib><creatorcontrib>Fiorucci, Stefano</creatorcontrib><title>The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regulates lipid metabolism and innate immunity. In this study we have investigated whether FXR gene expression/function in the intestine is modulated by TLRs. We found that in human monocytes activation of membrane TLRs (i.e. TLR2, 4, 5 and 6) downregulates, while activation of intracellular TLRs (i.e. TLR3, 7, 8 and 9) upregulates the expression of FXR and its target gene SHP, small heterodimer partner. This effect was TLR9-dependent and TNFα independent. Intestinal inflammation induced in mice by TNBS downregulates the intestinal expression of FXR in a TLR9-dependent manner. Protection against TNBS colitis by CpG, a TLR-9 ligand, was lost in FXR(-/-) mice. In contrast, activation of FXR rescued TLR9(-/-) and MyD88(-/-) mice from colitis. A putative IRF7 response element was detected in the FXR promoter and its functional characterization revealed that IRF7 is recruited on the FXR promoter under TLR9 stimulation. Intestinal expression of FXR is selectively modulated by TLR9. In addition to its role in regulating type-I interferons and innate antiviral immunity, IRF-7 a TLR9-dependent factor, regulates the expression of FXR, linking microbiota-sensing receptors to host's immune and metabolic signaling.</description><subject>Acids</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Bile</subject><subject>Biology</subject><subject>Cell activation</subject><subject>Cells, Cultured</subject><subject>Colitis</subject><subject>Colitis - chemically induced</subject><subject>Colitis - genetics</subject><subject>Colitis - immunology</subject><subject>CpG islands</subject><subject>Deoxycholic acid</subject><subject>Gastroenterology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunity, Innate - genetics</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Innate immunity</subject><subject>Interferon</subject><subject>Interferon regulatory factor 7</subject><subject>Interferon Regulatory Factor-7 - genetics</subject><subject>Interferon Regulatory Factor-7 - immunology</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Intestines - immunology</subject><subject>Ligands</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Male</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Monocytes</subject><subject>Monocytes - cytology</subject><subject>Monocytes - metabolism</subject><subject>MyD88 protein</subject><subject>Myeloid Differentiation Factor 88 - deficiency</subject><subject>Myeloid Differentiation Factor 88 - genetics</subject><subject>Myeloid Differentiation Factor 88 - immunology</subject><subject>Oligodeoxyribonucleotides - pharmacology</subject><subject>Physiological aspects</subject><subject>Probiotics</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - immunology</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Signal Transduction - radiation effects</subject><subject>Signaling</subject><subject>TLR2 protein</subject><subject>TLR3 protein</subject><subject>TLR9 protein</subject><subject>Toll-Like Receptor 9 - deficiency</subject><subject>Toll-Like Receptor 9 - genetics</subject><subject>Toll-Like Receptor 9 - immunology</subject><subject>Toll-like receptors</subject><subject>Transcription factors</subject><subject>Trinitrobenzenesulfonic Acid</subject><subject>Tumor Necrosis Factor-alpha - immunology</subject><subject>Tumor necrosis factor-α</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLguBFx-arTW-EZXF1YGBhHMW7kKZJJ0PbzCbp4v5733G6yxQUpIWG9Dknb09PkrxG-QKREn3cudEPslvs3aAXec4oLfGT5BxVBGcFzsnTk_VZ8iKEHUCEF8Xz5AwTUuKSoPPEbrY6rW2nU6lskwY9BOfT65_r1IbU69vRet2kBvZs34-Dzrxux05G5-9BEe2djVaH1Jl0s1pnVWoHuKMO0cJssDSd7HsZrRteJs-M7IJ-NT0vku_XnzdXX7PVzZfl1eUqU0WFY0a0ymXNCoYML1Gd14YgQrHBOdMG85w2GMmqVJTWGFFFC86Bwg1FRnGJGblI3h59950LYkopCERwyTHjpAJieSQaJ3di720v_b1w0oo_G863QvpoVadFxaQqm1yqWlaUaSWRMlXDMK8oTFs04PVpOm2se90oPUQvu5np_M1gt6J1d4IwxuADweDdZODd7QjB_WPkiWolTAWxOjBTvQ1KXNKSc04KSoBa_IWCq9G9VdATAz96LvgwEwAT9a_YyjEEsfy2_n_25secfX_CbrXs4ja4bjz0IMxBegSVdyF4bR6TQ7k41PwhDXGouZhqDrI3p6k_ih56TX4D4Gr31A</recordid><startdate>20130125</startdate><enddate>20130125</enddate><creator>Renga, Barbara</creator><creator>Mencarelli, Andrea</creator><creator>Cipriani, Sabrina</creator><creator>D'Amore, Claudio</creator><creator>Carino, Adriana</creator><creator>Bruno, Angela</creator><creator>Francisci, Daniela</creator><creator>Zampella, Angela</creator><creator>Distrutti, Eleonora</creator><creator>Fiorucci, Stefano</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130125</creationdate><title>The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation</title><author>Renga, Barbara ; Mencarelli, Andrea ; Cipriani, Sabrina ; D'Amore, Claudio ; Carino, Adriana ; Bruno, Angela ; Francisci, Daniela ; Zampella, Angela ; Distrutti, Eleonora ; Fiorucci, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Bile</topic><topic>Biology</topic><topic>Cell activation</topic><topic>Cells, Cultured</topic><topic>Colitis</topic><topic>Colitis - chemically induced</topic><topic>Colitis - genetics</topic><topic>Colitis - immunology</topic><topic>CpG islands</topic><topic>Deoxycholic acid</topic><topic>Gastroenterology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunity, Innate - genetics</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Innate immunity</topic><topic>Interferon</topic><topic>Interferon regulatory factor 7</topic><topic>Interferon Regulatory Factor-7 - genetics</topic><topic>Interferon Regulatory Factor-7 - immunology</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Intestines - immunology</topic><topic>Ligands</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Male</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Monocytes</topic><topic>Monocytes - cytology</topic><topic>Monocytes - metabolism</topic><topic>MyD88 protein</topic><topic>Myeloid Differentiation Factor 88 - deficiency</topic><topic>Myeloid Differentiation Factor 88 - genetics</topic><topic>Myeloid Differentiation Factor 88 - immunology</topic><topic>Oligodeoxyribonucleotides - pharmacology</topic><topic>Physiological aspects</topic><topic>Probiotics</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - immunology</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Signal Transduction - radiation effects</topic><topic>Signaling</topic><topic>TLR2 protein</topic><topic>TLR3 protein</topic><topic>TLR9 protein</topic><topic>Toll-Like Receptor 9 - deficiency</topic><topic>Toll-Like Receptor 9 - genetics</topic><topic>Toll-Like Receptor 9 - immunology</topic><topic>Toll-like receptors</topic><topic>Transcription factors</topic><topic>Trinitrobenzenesulfonic Acid</topic><topic>Tumor Necrosis Factor-alpha - immunology</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renga, Barbara</creatorcontrib><creatorcontrib>Mencarelli, Andrea</creatorcontrib><creatorcontrib>Cipriani, Sabrina</creatorcontrib><creatorcontrib>D'Amore, Claudio</creatorcontrib><creatorcontrib>Carino, Adriana</creatorcontrib><creatorcontrib>Bruno, Angela</creatorcontrib><creatorcontrib>Francisci, Daniela</creatorcontrib><creatorcontrib>Zampella, Angela</creatorcontrib><creatorcontrib>Distrutti, Eleonora</creatorcontrib><creatorcontrib>Fiorucci, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renga, Barbara</au><au>Mencarelli, Andrea</au><au>Cipriani, Sabrina</au><au>D'Amore, Claudio</au><au>Carino, Adriana</au><au>Bruno, Angela</au><au>Francisci, Daniela</au><au>Zampella, Angela</au><au>Distrutti, Eleonora</au><au>Fiorucci, Stefano</au><au>Boone, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-25</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e54472</spage><pages>e54472-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues. FXR regulates lipid metabolism and innate immunity. In this study we have investigated whether FXR gene expression/function in the intestine is modulated by TLRs. We found that in human monocytes activation of membrane TLRs (i.e. TLR2, 4, 5 and 6) downregulates, while activation of intracellular TLRs (i.e. TLR3, 7, 8 and 9) upregulates the expression of FXR and its target gene SHP, small heterodimer partner. This effect was TLR9-dependent and TNFα independent. Intestinal inflammation induced in mice by TNBS downregulates the intestinal expression of FXR in a TLR9-dependent manner. Protection against TNBS colitis by CpG, a TLR-9 ligand, was lost in FXR(-/-) mice. In contrast, activation of FXR rescued TLR9(-/-) and MyD88(-/-) mice from colitis. A putative IRF7 response element was detected in the FXR promoter and its functional characterization revealed that IRF7 is recruited on the FXR promoter under TLR9 stimulation. Intestinal expression of FXR is selectively modulated by TLR9. In addition to its role in regulating type-I interferons and innate antiviral immunity, IRF-7 a TLR9-dependent factor, regulates the expression of FXR, linking microbiota-sensing receptors to host's immune and metabolic signaling.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23372731</pmid><doi>10.1371/journal.pone.0054472</doi><tpages>e54472</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-01, Vol.8 (1), p.e54472
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327825839
source Publicly Available Content Database; PubMed Central
subjects Acids
Animal tissues
Animals
Bile
Biology
Cell activation
Cells, Cultured
Colitis
Colitis - chemically induced
Colitis - genetics
Colitis - immunology
CpG islands
Deoxycholic acid
Gastroenterology
Gene expression
Gene Expression Regulation - drug effects
Genes
Genetic research
Homeostasis
Humans
Immune response
Immune system
Immunity
Immunity, Innate - genetics
Inflammation
Inflammatory bowel disease
Innate immunity
Interferon
Interferon regulatory factor 7
Interferon Regulatory Factor-7 - genetics
Interferon Regulatory Factor-7 - immunology
Intestinal microflora
Intestine
Intestines - immunology
Ligands
Lipid metabolism
Lipids
Male
Medicine
Metabolism
Mice
Mice, Knockout
Microbiota
Microbiota (Symbiotic organisms)
Microorganisms
Monocytes
Monocytes - cytology
Monocytes - metabolism
MyD88 protein
Myeloid Differentiation Factor 88 - deficiency
Myeloid Differentiation Factor 88 - genetics
Myeloid Differentiation Factor 88 - immunology
Oligodeoxyribonucleotides - pharmacology
Physiological aspects
Probiotics
Promoter Regions, Genetic
Proteins
Receptors
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - immunology
Receptors, Cytoplasmic and Nuclear - metabolism
Rodents
Signal Transduction - drug effects
Signal Transduction - physiology
Signal Transduction - radiation effects
Signaling
TLR2 protein
TLR3 protein
TLR9 protein
Toll-Like Receptor 9 - deficiency
Toll-Like Receptor 9 - genetics
Toll-Like Receptor 9 - immunology
Toll-like receptors
Transcription factors
Trinitrobenzenesulfonic Acid
Tumor Necrosis Factor-alpha - immunology
Tumor necrosis factor-α
title The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20bile%20acid%20sensor%20FXR%20is%20required%20for%20immune-regulatory%20activities%20of%20TLR-9%20in%20intestinal%20inflammation&rft.jtitle=PloS%20one&rft.au=Renga,%20Barbara&rft.date=2013-01-25&rft.volume=8&rft.issue=1&rft.spage=e54472&rft.pages=e54472-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0054472&rft_dat=%3Cgale_plos_%3EA478883643%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-3ec0ab5651f871b0bf31342f205ef2804d21a97c44b214c46881b02d41fc8a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1327825839&rft_id=info:pmid/23372731&rft_galeid=A478883643&rfr_iscdi=true