Loading…

Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition

Fetal growth is critically dependent on energy metabolism in the placenta, which drives active exchange of nutrients. Placental oxygen levels are therefore vital, and chronic hypoxia during pregnancy impairs fetal growth. Here we tested the hypothesis that placental hypoxia alters mitochondrial elec...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-01, Vol.8 (1), p.e55194-e55194
Main Authors: Colleoni, Francesca, Padmanabhan, Nisha, Yung, Hong-Wa, Watson, Erica D, Cetin, Irene, Tissot van Patot, Martha C, Burton, Graham J, Murray, Andrew J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3
cites cdi_FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3
container_end_page e55194
container_issue 1
container_start_page e55194
container_title PloS one
container_volume 8
creator Colleoni, Francesca
Padmanabhan, Nisha
Yung, Hong-Wa
Watson, Erica D
Cetin, Irene
Tissot van Patot, Martha C
Burton, Graham J
Murray, Andrew J
description Fetal growth is critically dependent on energy metabolism in the placenta, which drives active exchange of nutrients. Placental oxygen levels are therefore vital, and chronic hypoxia during pregnancy impairs fetal growth. Here we tested the hypothesis that placental hypoxia alters mitochondrial electron transport chain (ETS) function, and sought to identify underlying mechanisms. We cultured human placental cells under different oxygen concentrations. Mitochondrial respiration was measured, alongside levels of ETS complexes. Additionally, we studied placentas from sea-level and high-altitude pregnancies. After 4 d at 1% O₂ (1.01 KPa), complex I-supported respiration was 57% and 37% lower, in trophoblast-like JEG3 cells and fibroblasts, respectively, compared with controls cultured at 21% O₂ (21.24 KPa); complex IV-supported respiration was 22% and 30% lower. Correspondingly, complex I levels were 45% lower in placentas from high-altitude pregnancies than those from sea-level pregnancies. Expression of HIF-responsive microRNA-210 was increased in hypoxic fibroblasts and high-altitude placentas, whilst expression of its targets, iron-sulfur cluster scaffold (ISCU) and cytochrome c oxidase assembly protein (COX10), decreased. Moreover, protein synthesis inhibition, a feature of the high-altitude placenta, also suppressed ETS complex protein levels. Our results demonstrate that mitochondrial function is altered in hypoxic human placentas, with specific suppression of complexes I and IV compromising energy metabolism and potentially contributing to impaired fetal growth.
doi_str_mv 10.1371/journal.pone.0055194
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1327980161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477937601</galeid><doaj_id>oai_doaj_org_article_b91a72c70fb2420d8bb2cd89b845db84</doaj_id><sourcerecordid>A477937601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3</originalsourceid><addsrcrecordid>eNqNk92K1DAYhoso7rp6B6IBQfRgxvy0aeuBMCz-DCwu7KqnIUnTaYZMUpNUdq7DGzZ1ustU9kAKbZo875t-b_Nl2XMEl4iU6N3WDd5ys-ydVUsIiwLV-YPsFNUELyiG5OHR-CR7EsI2QaSi9HF2ggmpCILFafb7euh7r0LQzgLXgp2OTnbONl5zA5RRMvq0Ej23oXc-AtlxbUE7WBlHSRrHToFu37sbLUE37LgFveFS2cjfAw68Mwq0zifnq6-rBUYQcNuA3ruokjjsbdIHHZJTp4UeTZ9mj1pugno2Pc-y758-fjv_sri4_Lw-X10sJK1xXPBUjshLURU5KWskUnlUVelN5nWBORawRJQKqCCCgpJWFkVFSlq2ENKqbAU5y14efHvjApvyDAwRXNYVRBQlYn0gGse3rPd6x_2eOa7Z3wnnN4z7qKVRTNSIl1iWsBU4x7CphMCyqWpR5UWTbsnrw7TbIHaqGQPy3MxM5ytWd2zjfjFSFDXJR4M3k4F3PwcVItvpIJUx3Co3pO_GVU4xriFN6Kt_0Purm6gNTwVo27q0rxxN2SovyzqFBUdqeQ-VrkbttEyHr9VpfiZ4OxMkJqqbuOFDCGx9ffX_7OWPOfv6iO0UN7ELzgzjkQlzMD-A0rsQvGrvQkaQjb1zmwYbe4dNvZNkL45_0J3otlnIHwT0FLo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327980161</pqid></control><display><type>article</type><title>Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Colleoni, Francesca ; Padmanabhan, Nisha ; Yung, Hong-Wa ; Watson, Erica D ; Cetin, Irene ; Tissot van Patot, Martha C ; Burton, Graham J ; Murray, Andrew J</creator><contributor>Bai, Yidong</contributor><creatorcontrib>Colleoni, Francesca ; Padmanabhan, Nisha ; Yung, Hong-Wa ; Watson, Erica D ; Cetin, Irene ; Tissot van Patot, Martha C ; Burton, Graham J ; Murray, Andrew J ; Bai, Yidong</creatorcontrib><description>Fetal growth is critically dependent on energy metabolism in the placenta, which drives active exchange of nutrients. Placental oxygen levels are therefore vital, and chronic hypoxia during pregnancy impairs fetal growth. Here we tested the hypothesis that placental hypoxia alters mitochondrial electron transport chain (ETS) function, and sought to identify underlying mechanisms. We cultured human placental cells under different oxygen concentrations. Mitochondrial respiration was measured, alongside levels of ETS complexes. Additionally, we studied placentas from sea-level and high-altitude pregnancies. After 4 d at 1% O₂ (1.01 KPa), complex I-supported respiration was 57% and 37% lower, in trophoblast-like JEG3 cells and fibroblasts, respectively, compared with controls cultured at 21% O₂ (21.24 KPa); complex IV-supported respiration was 22% and 30% lower. Correspondingly, complex I levels were 45% lower in placentas from high-altitude pregnancies than those from sea-level pregnancies. Expression of HIF-responsive microRNA-210 was increased in hypoxic fibroblasts and high-altitude placentas, whilst expression of its targets, iron-sulfur cluster scaffold (ISCU) and cytochrome c oxidase assembly protein (COX10), decreased. Moreover, protein synthesis inhibition, a feature of the high-altitude placenta, also suppressed ETS complex protein levels. Our results demonstrate that mitochondrial function is altered in hypoxic human placentas, with specific suppression of complexes I and IV compromising energy metabolism and potentially contributing to impaired fetal growth.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0055194</identifier><identifier>PMID: 23383105</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alkyl and Aryl Transferases - metabolism ; Altitude ; Analysis of Variance ; Apoptosis ; Biology ; Blotting, Western ; Cancer ; Cell Culture Techniques ; Cell cycle ; Cell Line ; Cytochrome ; Cytochrome-c oxidase ; Electron transport ; Electron transport chain ; Electron Transport Chain Complex Proteins - antagonists &amp; inhibitors ; Electron Transport Complex IV - metabolism ; Energy metabolism ; Energy Metabolism - physiology ; Female ; Fetal development ; Fetuses ; Fibroblasts ; High altitude ; High-altitude environments ; Humans ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - physiopathology ; Inhibition ; Iron ; Iron-Sulfur Proteins - metabolism ; Medicine ; Membrane Proteins - metabolism ; Metabolism ; MicroRNA ; MicroRNAs ; MicroRNAs - metabolism ; MicroRNAs - pharmacology ; miRNA ; Mitochondria ; Mitochondrial DNA ; Musculoskeletal system ; Neurosciences ; Nitric oxide ; Nutrients ; Oxidases ; Oxidative stress ; Oxygen ; Oxygen - metabolism ; Physiology ; Placenta ; Placenta - physiopathology ; Preeclampsia ; Pregnancy ; Protein biosynthesis ; Protein synthesis ; Proteins ; Real-Time Polymerase Chain Reaction ; Respiration ; Ribonucleic acid ; RNA ; Rodents ; Sea level ; Sulfur ; Target recognition</subject><ispartof>PloS one, 2013-01, Vol.8 (1), p.e55194-e55194</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Colleoni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Colleoni et al 2013 Colleoni et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3</citedby><cites>FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1327980161/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1327980161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23383105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bai, Yidong</contributor><creatorcontrib>Colleoni, Francesca</creatorcontrib><creatorcontrib>Padmanabhan, Nisha</creatorcontrib><creatorcontrib>Yung, Hong-Wa</creatorcontrib><creatorcontrib>Watson, Erica D</creatorcontrib><creatorcontrib>Cetin, Irene</creatorcontrib><creatorcontrib>Tissot van Patot, Martha C</creatorcontrib><creatorcontrib>Burton, Graham J</creatorcontrib><creatorcontrib>Murray, Andrew J</creatorcontrib><title>Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Fetal growth is critically dependent on energy metabolism in the placenta, which drives active exchange of nutrients. Placental oxygen levels are therefore vital, and chronic hypoxia during pregnancy impairs fetal growth. Here we tested the hypothesis that placental hypoxia alters mitochondrial electron transport chain (ETS) function, and sought to identify underlying mechanisms. We cultured human placental cells under different oxygen concentrations. Mitochondrial respiration was measured, alongside levels of ETS complexes. Additionally, we studied placentas from sea-level and high-altitude pregnancies. After 4 d at 1% O₂ (1.01 KPa), complex I-supported respiration was 57% and 37% lower, in trophoblast-like JEG3 cells and fibroblasts, respectively, compared with controls cultured at 21% O₂ (21.24 KPa); complex IV-supported respiration was 22% and 30% lower. Correspondingly, complex I levels were 45% lower in placentas from high-altitude pregnancies than those from sea-level pregnancies. Expression of HIF-responsive microRNA-210 was increased in hypoxic fibroblasts and high-altitude placentas, whilst expression of its targets, iron-sulfur cluster scaffold (ISCU) and cytochrome c oxidase assembly protein (COX10), decreased. Moreover, protein synthesis inhibition, a feature of the high-altitude placenta, also suppressed ETS complex protein levels. Our results demonstrate that mitochondrial function is altered in hypoxic human placentas, with specific suppression of complexes I and IV compromising energy metabolism and potentially contributing to impaired fetal growth.</description><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Altitude</subject><subject>Analysis of Variance</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Cancer</subject><subject>Cell Culture Techniques</subject><subject>Cell cycle</subject><subject>Cell Line</subject><subject>Cytochrome</subject><subject>Cytochrome-c oxidase</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Electron Transport Chain Complex Proteins - antagonists &amp; inhibitors</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Female</subject><subject>Fetal development</subject><subject>Fetuses</subject><subject>Fibroblasts</subject><subject>High altitude</subject><subject>High-altitude environments</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - physiopathology</subject><subject>Inhibition</subject><subject>Iron</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Medicine</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolism</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - metabolism</subject><subject>MicroRNAs - pharmacology</subject><subject>miRNA</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Musculoskeletal system</subject><subject>Neurosciences</subject><subject>Nitric oxide</subject><subject>Nutrients</subject><subject>Oxidases</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Physiology</subject><subject>Placenta</subject><subject>Placenta - physiopathology</subject><subject>Preeclampsia</subject><subject>Pregnancy</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Respiration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Sea level</subject><subject>Sulfur</subject><subject>Target recognition</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk92K1DAYhoso7rp6B6IBQfRgxvy0aeuBMCz-DCwu7KqnIUnTaYZMUpNUdq7DGzZ1ustU9kAKbZo875t-b_Nl2XMEl4iU6N3WDd5ys-ydVUsIiwLV-YPsFNUELyiG5OHR-CR7EsI2QaSi9HF2ggmpCILFafb7euh7r0LQzgLXgp2OTnbONl5zA5RRMvq0Ej23oXc-AtlxbUE7WBlHSRrHToFu37sbLUE37LgFveFS2cjfAw68Mwq0zifnq6-rBUYQcNuA3ruokjjsbdIHHZJTp4UeTZ9mj1pugno2Pc-y758-fjv_sri4_Lw-X10sJK1xXPBUjshLURU5KWskUnlUVelN5nWBORawRJQKqCCCgpJWFkVFSlq2ENKqbAU5y14efHvjApvyDAwRXNYVRBQlYn0gGse3rPd6x_2eOa7Z3wnnN4z7qKVRTNSIl1iWsBU4x7CphMCyqWpR5UWTbsnrw7TbIHaqGQPy3MxM5ytWd2zjfjFSFDXJR4M3k4F3PwcVItvpIJUx3Co3pO_GVU4xriFN6Kt_0Purm6gNTwVo27q0rxxN2SovyzqFBUdqeQ-VrkbttEyHr9VpfiZ4OxMkJqqbuOFDCGx9ffX_7OWPOfv6iO0UN7ELzgzjkQlzMD-A0rsQvGrvQkaQjb1zmwYbe4dNvZNkL45_0J3otlnIHwT0FLo</recordid><startdate>20130130</startdate><enddate>20130130</enddate><creator>Colleoni, Francesca</creator><creator>Padmanabhan, Nisha</creator><creator>Yung, Hong-Wa</creator><creator>Watson, Erica D</creator><creator>Cetin, Irene</creator><creator>Tissot van Patot, Martha C</creator><creator>Burton, Graham J</creator><creator>Murray, Andrew J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130130</creationdate><title>Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition</title><author>Colleoni, Francesca ; Padmanabhan, Nisha ; Yung, Hong-Wa ; Watson, Erica D ; Cetin, Irene ; Tissot van Patot, Martha C ; Burton, Graham J ; Murray, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Altitude</topic><topic>Analysis of Variance</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Cancer</topic><topic>Cell Culture Techniques</topic><topic>Cell cycle</topic><topic>Cell Line</topic><topic>Cytochrome</topic><topic>Cytochrome-c oxidase</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Electron Transport Chain Complex Proteins - antagonists &amp; inhibitors</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Female</topic><topic>Fetal development</topic><topic>Fetuses</topic><topic>Fibroblasts</topic><topic>High altitude</topic><topic>High-altitude environments</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - physiopathology</topic><topic>Inhibition</topic><topic>Iron</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Medicine</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolism</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - metabolism</topic><topic>MicroRNAs - pharmacology</topic><topic>miRNA</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Musculoskeletal system</topic><topic>Neurosciences</topic><topic>Nitric oxide</topic><topic>Nutrients</topic><topic>Oxidases</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Physiology</topic><topic>Placenta</topic><topic>Placenta - physiopathology</topic><topic>Preeclampsia</topic><topic>Pregnancy</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Respiration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Sea level</topic><topic>Sulfur</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colleoni, Francesca</creatorcontrib><creatorcontrib>Padmanabhan, Nisha</creatorcontrib><creatorcontrib>Yung, Hong-Wa</creatorcontrib><creatorcontrib>Watson, Erica D</creatorcontrib><creatorcontrib>Cetin, Irene</creatorcontrib><creatorcontrib>Tissot van Patot, Martha C</creatorcontrib><creatorcontrib>Burton, Graham J</creatorcontrib><creatorcontrib>Murray, Andrew J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colleoni, Francesca</au><au>Padmanabhan, Nisha</au><au>Yung, Hong-Wa</au><au>Watson, Erica D</au><au>Cetin, Irene</au><au>Tissot van Patot, Martha C</au><au>Burton, Graham J</au><au>Murray, Andrew J</au><au>Bai, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-01-30</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e55194</spage><epage>e55194</epage><pages>e55194-e55194</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fetal growth is critically dependent on energy metabolism in the placenta, which drives active exchange of nutrients. Placental oxygen levels are therefore vital, and chronic hypoxia during pregnancy impairs fetal growth. Here we tested the hypothesis that placental hypoxia alters mitochondrial electron transport chain (ETS) function, and sought to identify underlying mechanisms. We cultured human placental cells under different oxygen concentrations. Mitochondrial respiration was measured, alongside levels of ETS complexes. Additionally, we studied placentas from sea-level and high-altitude pregnancies. After 4 d at 1% O₂ (1.01 KPa), complex I-supported respiration was 57% and 37% lower, in trophoblast-like JEG3 cells and fibroblasts, respectively, compared with controls cultured at 21% O₂ (21.24 KPa); complex IV-supported respiration was 22% and 30% lower. Correspondingly, complex I levels were 45% lower in placentas from high-altitude pregnancies than those from sea-level pregnancies. Expression of HIF-responsive microRNA-210 was increased in hypoxic fibroblasts and high-altitude placentas, whilst expression of its targets, iron-sulfur cluster scaffold (ISCU) and cytochrome c oxidase assembly protein (COX10), decreased. Moreover, protein synthesis inhibition, a feature of the high-altitude placenta, also suppressed ETS complex protein levels. Our results demonstrate that mitochondrial function is altered in hypoxic human placentas, with specific suppression of complexes I and IV compromising energy metabolism and potentially contributing to impaired fetal growth.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23383105</pmid><doi>10.1371/journal.pone.0055194</doi><tpages>e55194</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-01, Vol.8 (1), p.e55194-e55194
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1327980161
source Publicly Available Content Database; PubMed Central
subjects Alkyl and Aryl Transferases - metabolism
Altitude
Analysis of Variance
Apoptosis
Biology
Blotting, Western
Cancer
Cell Culture Techniques
Cell cycle
Cell Line
Cytochrome
Cytochrome-c oxidase
Electron transport
Electron transport chain
Electron Transport Chain Complex Proteins - antagonists & inhibitors
Electron Transport Complex IV - metabolism
Energy metabolism
Energy Metabolism - physiology
Female
Fetal development
Fetuses
Fibroblasts
High altitude
High-altitude environments
Humans
Hypoxia
Hypoxia - metabolism
Hypoxia - physiopathology
Inhibition
Iron
Iron-Sulfur Proteins - metabolism
Medicine
Membrane Proteins - metabolism
Metabolism
MicroRNA
MicroRNAs
MicroRNAs - metabolism
MicroRNAs - pharmacology
miRNA
Mitochondria
Mitochondrial DNA
Musculoskeletal system
Neurosciences
Nitric oxide
Nutrients
Oxidases
Oxidative stress
Oxygen
Oxygen - metabolism
Physiology
Placenta
Placenta - physiopathology
Preeclampsia
Pregnancy
Protein biosynthesis
Protein synthesis
Proteins
Real-Time Polymerase Chain Reaction
Respiration
Ribonucleic acid
RNA
Rodents
Sea level
Sulfur
Target recognition
title Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20mitochondrial%20electron%20transport%20chain%20function%20in%20the%20hypoxic%20human%20placenta:%20a%20role%20for%20miRNA-210%20and%20protein%20synthesis%20inhibition&rft.jtitle=PloS%20one&rft.au=Colleoni,%20Francesca&rft.date=2013-01-30&rft.volume=8&rft.issue=1&rft.spage=e55194&rft.epage=e55194&rft.pages=e55194-e55194&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0055194&rft_dat=%3Cgale_plos_%3EA477937601%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-a053b47b8543791b0056e8854c4952a2b07166b0e010b63fc5583767f00687fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1327980161&rft_id=info:pmid/23383105&rft_galeid=A477937601&rfr_iscdi=true