Loading…

Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity

With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013, Vol.8 (1), p.e55788-e55788
Main Authors: Wijesundara, Danushka K, Tscharke, David C, Jackson, Ronald J, Ranasinghe, Charani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103
cites cdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103
container_end_page e55788
container_issue 1
container_start_page e55788
container_title PloS one
container_volume 8
creator Wijesundara, Danushka K
Tscharke, David C
Jackson, Ronald J
Ranasinghe, Charani
description With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.
doi_str_mv 10.1371/journal.pone.0055788
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1328020928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_80c343fe4a3a4345bf62ebef52d3271a</doaj_id><sourcerecordid>1284625404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</originalsourceid><addsrcrecordid>eNptUu1qFDEUDaLYuvoGogH_FGTWfM5k_xRk60ehIEj9HTKZO7tZM5NpMlPtY_kiPpNZd1paEQJJbs49956bg9BLSpaUV_TdLkyxN345hB6WhEhZKfUIHdMVZ0XJCH9873yEnqW0yyCuyvIpOmKcK84UP0bhKzSThQa7foToYfru-kLgCBaGMUT8-xeGn0OElFzocV7rM_UWX2IL3idsQ4zgzQgJ_3DjFm_dZgsRX03Gu_EGm350xbWLxmPXdVOfY8_Rk9b4BC_mfYG-ffxwuf5cXHz5dL5-f1FYycqxqCtopVVW8FJKzmsl25WgVU1aVdWmhpWV1BhGhWop5KsSChpmSNNSzhpK-AK9PvAOPiQ9zyrp_KoII6usfYHOD4gmmJ0eoutMvNHBOP03EOJGmzg660ErYrngLQjDjeBC1m3JctVWsoaziprMdTpXm-oOGgv9mEU_IH340rut3oRrzWVJ93-xQCczQQxXE6RRdy7tZ2x6CFPumylRMimIyNA3_0D_r04cUDaGlCK0d81Qovf-uc3Se__o2T857dV9IXdJt4bhfwB4-8XR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328020928</pqid></control><display><type>article</type><title>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Wijesundara, Danushka K ; Tscharke, David C ; Jackson, Ronald J ; Ranasinghe, Charani</creator><contributor>Turner, Stephen J.</contributor><creatorcontrib>Wijesundara, Danushka K ; Tscharke, David C ; Jackson, Ronald J ; Ranasinghe, Charani ; Turner, Stephen J.</creatorcontrib><description>With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0055788</identifier><identifier>PMID: 23383283</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antiviral agents ; Biology ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cytokines ; Down-regulation ; Female ; Gene Expression Regulation ; Immunity ; Infections ; Influenza ; Interferon ; Interferon-gamma - genetics ; Interferon-gamma - metabolism ; Interleukin 13 ; Interleukin 4 ; Interleukin-13 - genetics ; Interleukin-13 - metabolism ; Interleukin-4 - genetics ; Interleukin-4 - metabolism ; Interleukin-4 Receptor alpha Subunit - genetics ; Interleukin-4 Receptor alpha Subunit - metabolism ; Lymphocyte Activation - immunology ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Knockout ; Parasites ; Receptors ; Receptors, Interleukin-13 - genetics ; Receptors, Interleukin-13 - metabolism ; Rodents ; Stat6 protein ; STAT6 Transcription Factor - genetics ; STAT6 Transcription Factor - metabolism ; T cell receptors ; Transcription ; Tumor necrosis factor-α ; Vaccines ; Vaccinia - genetics ; Vaccinia - immunology ; Vaccinia - metabolism ; Vaccinia virus - immunology ; Viruses ; γ-Interferon</subject><ispartof>PloS one, 2013, Vol.8 (1), p.e55788-e55788</ispartof><rights>2013 Wijesundara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Wijesundara et al 2013 Wijesundara et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</citedby><cites>FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1328020928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1328020928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23383283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Turner, Stephen J.</contributor><creatorcontrib>Wijesundara, Danushka K</creatorcontrib><creatorcontrib>Tscharke, David C</creatorcontrib><creatorcontrib>Jackson, Ronald J</creatorcontrib><creatorcontrib>Ranasinghe, Charani</creatorcontrib><title>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.</description><subject>Animals</subject><subject>Antiviral agents</subject><subject>Biology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cytokines</subject><subject>Down-regulation</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Immunity</subject><subject>Infections</subject><subject>Influenza</subject><subject>Interferon</subject><subject>Interferon-gamma - genetics</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin 13</subject><subject>Interleukin 4</subject><subject>Interleukin-13 - genetics</subject><subject>Interleukin-13 - metabolism</subject><subject>Interleukin-4 - genetics</subject><subject>Interleukin-4 - metabolism</subject><subject>Interleukin-4 Receptor alpha Subunit - genetics</subject><subject>Interleukin-4 Receptor alpha Subunit - metabolism</subject><subject>Lymphocyte Activation - immunology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Parasites</subject><subject>Receptors</subject><subject>Receptors, Interleukin-13 - genetics</subject><subject>Receptors, Interleukin-13 - metabolism</subject><subject>Rodents</subject><subject>Stat6 protein</subject><subject>STAT6 Transcription Factor - genetics</subject><subject>STAT6 Transcription Factor - metabolism</subject><subject>T cell receptors</subject><subject>Transcription</subject><subject>Tumor necrosis factor-α</subject><subject>Vaccines</subject><subject>Vaccinia - genetics</subject><subject>Vaccinia - immunology</subject><subject>Vaccinia - metabolism</subject><subject>Vaccinia virus - immunology</subject><subject>Viruses</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUu1qFDEUDaLYuvoGogH_FGTWfM5k_xRk60ehIEj9HTKZO7tZM5NpMlPtY_kiPpNZd1paEQJJbs49956bg9BLSpaUV_TdLkyxN345hB6WhEhZKfUIHdMVZ0XJCH9873yEnqW0yyCuyvIpOmKcK84UP0bhKzSThQa7foToYfru-kLgCBaGMUT8-xeGn0OElFzocV7rM_UWX2IL3idsQ4zgzQgJ_3DjFm_dZgsRX03Gu_EGm350xbWLxmPXdVOfY8_Rk9b4BC_mfYG-ffxwuf5cXHz5dL5-f1FYycqxqCtopVVW8FJKzmsl25WgVU1aVdWmhpWV1BhGhWop5KsSChpmSNNSzhpK-AK9PvAOPiQ9zyrp_KoII6usfYHOD4gmmJ0eoutMvNHBOP03EOJGmzg660ErYrngLQjDjeBC1m3JctVWsoaziprMdTpXm-oOGgv9mEU_IH340rut3oRrzWVJ93-xQCczQQxXE6RRdy7tZ2x6CFPumylRMimIyNA3_0D_r04cUDaGlCK0d81Qovf-uc3Se__o2T857dV9IXdJt4bhfwB4-8XR</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Wijesundara, Danushka K</creator><creator>Tscharke, David C</creator><creator>Jackson, Ronald J</creator><creator>Ranasinghe, Charani</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2013</creationdate><title>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</title><author>Wijesundara, Danushka K ; Tscharke, David C ; Jackson, Ronald J ; Ranasinghe, Charani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antiviral agents</topic><topic>Biology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cytokines</topic><topic>Down-regulation</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Immunity</topic><topic>Infections</topic><topic>Influenza</topic><topic>Interferon</topic><topic>Interferon-gamma - genetics</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin 13</topic><topic>Interleukin 4</topic><topic>Interleukin-13 - genetics</topic><topic>Interleukin-13 - metabolism</topic><topic>Interleukin-4 - genetics</topic><topic>Interleukin-4 - metabolism</topic><topic>Interleukin-4 Receptor alpha Subunit - genetics</topic><topic>Interleukin-4 Receptor alpha Subunit - metabolism</topic><topic>Lymphocyte Activation - immunology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Parasites</topic><topic>Receptors</topic><topic>Receptors, Interleukin-13 - genetics</topic><topic>Receptors, Interleukin-13 - metabolism</topic><topic>Rodents</topic><topic>Stat6 protein</topic><topic>STAT6 Transcription Factor - genetics</topic><topic>STAT6 Transcription Factor - metabolism</topic><topic>T cell receptors</topic><topic>Transcription</topic><topic>Tumor necrosis factor-α</topic><topic>Vaccines</topic><topic>Vaccinia - genetics</topic><topic>Vaccinia - immunology</topic><topic>Vaccinia - metabolism</topic><topic>Vaccinia virus - immunology</topic><topic>Viruses</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijesundara, Danushka K</creatorcontrib><creatorcontrib>Tscharke, David C</creatorcontrib><creatorcontrib>Jackson, Ronald J</creatorcontrib><creatorcontrib>Ranasinghe, Charani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijesundara, Danushka K</au><au>Tscharke, David C</au><au>Jackson, Ronald J</au><au>Ranasinghe, Charani</au><au>Turner, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e55788</spage><epage>e55788</epage><pages>e55788-e55788</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23383283</pmid><doi>10.1371/journal.pone.0055788</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013, Vol.8 (1), p.e55788-e55788
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1328020928
source PubMed Central (Open Access); Publicly Available Content Database
subjects Animals
Antiviral agents
Biology
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cytokines
Down-regulation
Female
Gene Expression Regulation
Immunity
Infections
Influenza
Interferon
Interferon-gamma - genetics
Interferon-gamma - metabolism
Interleukin 13
Interleukin 4
Interleukin-13 - genetics
Interleukin-13 - metabolism
Interleukin-4 - genetics
Interleukin-4 - metabolism
Interleukin-4 Receptor alpha Subunit - genetics
Interleukin-4 Receptor alpha Subunit - metabolism
Lymphocyte Activation - immunology
Lymphocytes
Lymphocytes T
Mice
Mice, Knockout
Parasites
Receptors
Receptors, Interleukin-13 - genetics
Receptors, Interleukin-13 - metabolism
Rodents
Stat6 protein
STAT6 Transcription Factor - genetics
STAT6 Transcription Factor - metabolism
T cell receptors
Transcription
Tumor necrosis factor-α
Vaccines
Vaccinia - genetics
Vaccinia - immunology
Vaccinia - metabolism
Vaccinia virus - immunology
Viruses
γ-Interferon
title Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20interleukin-4%20receptor%20%CE%B1%20expression%20on%20CD8+%20T%20cells%20correlates%20with%20higher%20quality%20anti-viral%20immunity&rft.jtitle=PloS%20one&rft.au=Wijesundara,%20Danushka%20K&rft.date=2013&rft.volume=8&rft.issue=1&rft.spage=e55788&rft.epage=e55788&rft.pages=e55788-e55788&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0055788&rft_dat=%3Cproquest_plos_%3E1284625404%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1328020928&rft_id=info:pmid/23383283&rfr_iscdi=true