Loading…
Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity
With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/...
Saved in:
Published in: | PloS one 2013, Vol.8 (1), p.e55788-e55788 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103 |
container_end_page | e55788 |
container_issue | 1 |
container_start_page | e55788 |
container_title | PloS one |
container_volume | 8 |
creator | Wijesundara, Danushka K Tscharke, David C Jackson, Ronald J Ranasinghe, Charani |
description | With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections. |
doi_str_mv | 10.1371/journal.pone.0055788 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1328020928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_80c343fe4a3a4345bf62ebef52d3271a</doaj_id><sourcerecordid>1284625404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</originalsourceid><addsrcrecordid>eNptUu1qFDEUDaLYuvoGogH_FGTWfM5k_xRk60ehIEj9HTKZO7tZM5NpMlPtY_kiPpNZd1paEQJJbs49956bg9BLSpaUV_TdLkyxN345hB6WhEhZKfUIHdMVZ0XJCH9873yEnqW0yyCuyvIpOmKcK84UP0bhKzSThQa7foToYfru-kLgCBaGMUT8-xeGn0OElFzocV7rM_UWX2IL3idsQ4zgzQgJ_3DjFm_dZgsRX03Gu_EGm350xbWLxmPXdVOfY8_Rk9b4BC_mfYG-ffxwuf5cXHz5dL5-f1FYycqxqCtopVVW8FJKzmsl25WgVU1aVdWmhpWV1BhGhWop5KsSChpmSNNSzhpK-AK9PvAOPiQ9zyrp_KoII6usfYHOD4gmmJ0eoutMvNHBOP03EOJGmzg660ErYrngLQjDjeBC1m3JctVWsoaziprMdTpXm-oOGgv9mEU_IH340rut3oRrzWVJ93-xQCczQQxXE6RRdy7tZ2x6CFPumylRMimIyNA3_0D_r04cUDaGlCK0d81Qovf-uc3Se__o2T857dV9IXdJt4bhfwB4-8XR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328020928</pqid></control><display><type>article</type><title>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Wijesundara, Danushka K ; Tscharke, David C ; Jackson, Ronald J ; Ranasinghe, Charani</creator><contributor>Turner, Stephen J.</contributor><creatorcontrib>Wijesundara, Danushka K ; Tscharke, David C ; Jackson, Ronald J ; Ranasinghe, Charani ; Turner, Stephen J.</creatorcontrib><description>With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0055788</identifier><identifier>PMID: 23383283</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antiviral agents ; Biology ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cytokines ; Down-regulation ; Female ; Gene Expression Regulation ; Immunity ; Infections ; Influenza ; Interferon ; Interferon-gamma - genetics ; Interferon-gamma - metabolism ; Interleukin 13 ; Interleukin 4 ; Interleukin-13 - genetics ; Interleukin-13 - metabolism ; Interleukin-4 - genetics ; Interleukin-4 - metabolism ; Interleukin-4 Receptor alpha Subunit - genetics ; Interleukin-4 Receptor alpha Subunit - metabolism ; Lymphocyte Activation - immunology ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Knockout ; Parasites ; Receptors ; Receptors, Interleukin-13 - genetics ; Receptors, Interleukin-13 - metabolism ; Rodents ; Stat6 protein ; STAT6 Transcription Factor - genetics ; STAT6 Transcription Factor - metabolism ; T cell receptors ; Transcription ; Tumor necrosis factor-α ; Vaccines ; Vaccinia - genetics ; Vaccinia - immunology ; Vaccinia - metabolism ; Vaccinia virus - immunology ; Viruses ; γ-Interferon</subject><ispartof>PloS one, 2013, Vol.8 (1), p.e55788-e55788</ispartof><rights>2013 Wijesundara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Wijesundara et al 2013 Wijesundara et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</citedby><cites>FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1328020928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1328020928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,25732,27902,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23383283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Turner, Stephen J.</contributor><creatorcontrib>Wijesundara, Danushka K</creatorcontrib><creatorcontrib>Tscharke, David C</creatorcontrib><creatorcontrib>Jackson, Ronald J</creatorcontrib><creatorcontrib>Ranasinghe, Charani</creatorcontrib><title>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.</description><subject>Animals</subject><subject>Antiviral agents</subject><subject>Biology</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cytokines</subject><subject>Down-regulation</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Immunity</subject><subject>Infections</subject><subject>Influenza</subject><subject>Interferon</subject><subject>Interferon-gamma - genetics</subject><subject>Interferon-gamma - metabolism</subject><subject>Interleukin 13</subject><subject>Interleukin 4</subject><subject>Interleukin-13 - genetics</subject><subject>Interleukin-13 - metabolism</subject><subject>Interleukin-4 - genetics</subject><subject>Interleukin-4 - metabolism</subject><subject>Interleukin-4 Receptor alpha Subunit - genetics</subject><subject>Interleukin-4 Receptor alpha Subunit - metabolism</subject><subject>Lymphocyte Activation - immunology</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Parasites</subject><subject>Receptors</subject><subject>Receptors, Interleukin-13 - genetics</subject><subject>Receptors, Interleukin-13 - metabolism</subject><subject>Rodents</subject><subject>Stat6 protein</subject><subject>STAT6 Transcription Factor - genetics</subject><subject>STAT6 Transcription Factor - metabolism</subject><subject>T cell receptors</subject><subject>Transcription</subject><subject>Tumor necrosis factor-α</subject><subject>Vaccines</subject><subject>Vaccinia - genetics</subject><subject>Vaccinia - immunology</subject><subject>Vaccinia - metabolism</subject><subject>Vaccinia virus - immunology</subject><subject>Viruses</subject><subject>γ-Interferon</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUu1qFDEUDaLYuvoGogH_FGTWfM5k_xRk60ehIEj9HTKZO7tZM5NpMlPtY_kiPpNZd1paEQJJbs49956bg9BLSpaUV_TdLkyxN345hB6WhEhZKfUIHdMVZ0XJCH9873yEnqW0yyCuyvIpOmKcK84UP0bhKzSThQa7foToYfru-kLgCBaGMUT8-xeGn0OElFzocV7rM_UWX2IL3idsQ4zgzQgJ_3DjFm_dZgsRX03Gu_EGm350xbWLxmPXdVOfY8_Rk9b4BC_mfYG-ffxwuf5cXHz5dL5-f1FYycqxqCtopVVW8FJKzmsl25WgVU1aVdWmhpWV1BhGhWop5KsSChpmSNNSzhpK-AK9PvAOPiQ9zyrp_KoII6usfYHOD4gmmJ0eoutMvNHBOP03EOJGmzg660ErYrngLQjDjeBC1m3JctVWsoaziprMdTpXm-oOGgv9mEU_IH340rut3oRrzWVJ93-xQCczQQxXE6RRdy7tZ2x6CFPumylRMimIyNA3_0D_r04cUDaGlCK0d81Qovf-uc3Se__o2T857dV9IXdJt4bhfwB4-8XR</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Wijesundara, Danushka K</creator><creator>Tscharke, David C</creator><creator>Jackson, Ronald J</creator><creator>Ranasinghe, Charani</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2013</creationdate><title>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</title><author>Wijesundara, Danushka K ; Tscharke, David C ; Jackson, Ronald J ; Ranasinghe, Charani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antiviral agents</topic><topic>Biology</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cytokines</topic><topic>Down-regulation</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Immunity</topic><topic>Infections</topic><topic>Influenza</topic><topic>Interferon</topic><topic>Interferon-gamma - genetics</topic><topic>Interferon-gamma - metabolism</topic><topic>Interleukin 13</topic><topic>Interleukin 4</topic><topic>Interleukin-13 - genetics</topic><topic>Interleukin-13 - metabolism</topic><topic>Interleukin-4 - genetics</topic><topic>Interleukin-4 - metabolism</topic><topic>Interleukin-4 Receptor alpha Subunit - genetics</topic><topic>Interleukin-4 Receptor alpha Subunit - metabolism</topic><topic>Lymphocyte Activation - immunology</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Parasites</topic><topic>Receptors</topic><topic>Receptors, Interleukin-13 - genetics</topic><topic>Receptors, Interleukin-13 - metabolism</topic><topic>Rodents</topic><topic>Stat6 protein</topic><topic>STAT6 Transcription Factor - genetics</topic><topic>STAT6 Transcription Factor - metabolism</topic><topic>T cell receptors</topic><topic>Transcription</topic><topic>Tumor necrosis factor-α</topic><topic>Vaccines</topic><topic>Vaccinia - genetics</topic><topic>Vaccinia - immunology</topic><topic>Vaccinia - metabolism</topic><topic>Vaccinia virus - immunology</topic><topic>Viruses</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wijesundara, Danushka K</creatorcontrib><creatorcontrib>Tscharke, David C</creatorcontrib><creatorcontrib>Jackson, Ronald J</creatorcontrib><creatorcontrib>Ranasinghe, Charani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijesundara, Danushka K</au><au>Tscharke, David C</au><au>Jackson, Ronald J</au><au>Ranasinghe, Charani</au><au>Turner, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>e55788</spage><epage>e55788</epage><pages>e55788-e55788</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23383283</pmid><doi>10.1371/journal.pone.0055788</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013, Vol.8 (1), p.e55788-e55788 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1328020928 |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | Animals Antiviral agents Biology CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cytokines Down-regulation Female Gene Expression Regulation Immunity Infections Influenza Interferon Interferon-gamma - genetics Interferon-gamma - metabolism Interleukin 13 Interleukin 4 Interleukin-13 - genetics Interleukin-13 - metabolism Interleukin-4 - genetics Interleukin-4 - metabolism Interleukin-4 Receptor alpha Subunit - genetics Interleukin-4 Receptor alpha Subunit - metabolism Lymphocyte Activation - immunology Lymphocytes Lymphocytes T Mice Mice, Knockout Parasites Receptors Receptors, Interleukin-13 - genetics Receptors, Interleukin-13 - metabolism Rodents Stat6 protein STAT6 Transcription Factor - genetics STAT6 Transcription Factor - metabolism T cell receptors Transcription Tumor necrosis factor-α Vaccines Vaccinia - genetics Vaccinia - immunology Vaccinia - metabolism Vaccinia virus - immunology Viruses γ-Interferon |
title | Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20interleukin-4%20receptor%20%CE%B1%20expression%20on%20CD8+%20T%20cells%20correlates%20with%20higher%20quality%20anti-viral%20immunity&rft.jtitle=PloS%20one&rft.au=Wijesundara,%20Danushka%20K&rft.date=2013&rft.volume=8&rft.issue=1&rft.spage=e55788&rft.epage=e55788&rft.pages=e55788-e55788&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0055788&rft_dat=%3Cproquest_plos_%3E1284625404%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-b7ef5c8c4365533b85f9417b0f87babe9c51aa2148f1ebe9848ed2a0df132d103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1328020928&rft_id=info:pmid/23383283&rfr_iscdi=true |