Loading…

The interaction of large amplitude internal seiches with a shallow sloping lakebed: observations of benthic turbulence in Lake Simcoe, Ontario, Canada

Observations of the interactions of large amplitude internal seiches with the sloping boundary of Lake Simcoe, Canada show a pronounced asymmetry between up- and downwelling. Data were obtained during a 42-day period in late summer with an ADCP and an array of four thermistor chains located in a 5 k...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-03, Vol.8 (3), p.e57444
Main Authors: Cossu, Remo, Wells, Mathew G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Observations of the interactions of large amplitude internal seiches with the sloping boundary of Lake Simcoe, Canada show a pronounced asymmetry between up- and downwelling. Data were obtained during a 42-day period in late summer with an ADCP and an array of four thermistor chains located in a 5 km line at the depths where the thermocline intersects the shallow slope of the lakebed. The thermocline is located at depths of 12-14 m during the strongly stratified period of late summer. During periods of strong westerly winds the thermocline is deflected as much as 8 m vertically and interacts directly with the lakebed at depth between 14-18 m. When the thermocline was rising at the boundary, the stratification resembles a turbulent bore that propagates up the sloping lakebed with a speed of 0.05-0.15 m s(-1) and a Froude number close to unity. There were strong temperature overturns associated with the abrupt changes in temperature across the bore. Based on the size of overturns in the near bed stratification, we show that the inferred turbulent diffusivity varies by up to two orders of magnitude between up- and downwellings. When the thermocline was rising, estimates of turbulent diffusivity were high with KZ ∼10(-4) m(2)s(-1), whereas during downwelling events the near-bed stratification was greatly increased and the turbulence was reduced. This asymmetry is consistent with previous field observations and underlines the importance of shear-induced convection in benthic bottom boundary layers of stratified lakes.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0057444