Loading…

Feedback-based, system-level properties of vertebrate-microbial interactions

Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilize...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-02, Vol.8 (2), p.e53984-e53984
Main Authors: Rivas, Ariel L, Jankowski, Mark D, Piccinini, Renata, Leitner, Gabriel, Schwarz, Daniel, Anderson, Kevin L, Fair, Jeanne M, Hoogesteijn, Almira L, Wolter, Wilfried, Chaffer, Marcelo, Blum, Shlomo, Were, Tom, Konah, Stephen N, Kempaiah, Prakash, Ong'echa, John M, Diesterbeck, Ulrike S, Pilla, Rachel, Czerny, Claus-Peter, Hittner, James B, Hyman, James M, Perkins, Douglas J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383
cites cdi_FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383
container_end_page e53984
container_issue 2
container_start_page e53984
container_title PloS one
container_volume 8
creator Rivas, Ariel L
Jankowski, Mark D
Piccinini, Renata
Leitner, Gabriel
Schwarz, Daniel
Anderson, Kevin L
Fair, Jeanne M
Hoogesteijn, Almira L
Wolter, Wilfried
Chaffer, Marcelo
Blum, Shlomo
Were, Tom
Konah, Stephen N
Kempaiah, Prakash
Ong'echa, John M
Diesterbeck, Ulrike S
Pilla, Rachel
Czerny, Claus-Peter
Hittner, James B
Hyman, James M
Perkins, Douglas J
description Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.
doi_str_mv 10.1371/journal.pone.0053984
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1330880809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478204192</galeid><doaj_id>oai_doaj_org_article_4533f6e439644a68a77b469af2503ee9</doaj_id><sourcerecordid>A478204192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQHBVGwY25t0hdhWVwdGFjw9hrS9HQmY6YZk3Rwv73pTneZyj5IIQ3J7_xzrln2HKM5phx_2Ljed8rOd66DOUIFrQR7kJ3iipK8JIg-PNqfZE9C2AyQKMvH2QmhjHJEq9NseQnQ1Er_ymsVoHk_C9chwja3sAc723m3Ax8NhJlrZ_u0hdqrCPnWaO9qo-zMdBG80tG4LjzNHrXKBng2_s-yH5efvl98yZdXnxcX58tcc1zFnLcgClRUWAGioEirS9UKlHwSRVMpjASqMapJw4kSDW1xWgUTBQMoCaaCnmUvD7o764IcExEkphQJkayrRCwOROPURu682Sp_LZ0y8ubA-ZVUKS5tQbKC0rYERquSMVUKxXnNykq1pEjewaD1cXytr7fQaOiiV3YiOr3pzFqu3F7SgnPBSBJ4dRBwIRoZtImg19p1HegocUl4wYeY3o6vePe7hxDl1gQN1qoOXD8Eh0lZcIZoQl__g96fgpFaqRSl6VqXnNODqDxnXBDEcDX4Nr-HSl8DqcaptVqTzicG7yYGiYnwJ65UH4JcfPv6_-zVzyn75ohdg7JxHZztbxprCrIDmDowBA_tXSUwksNk3GZDDpMhx8lIZi-Oq3hndDsK9C8Gqwbr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1330880809</pqid></control><display><type>article</type><title>Feedback-based, system-level properties of vertebrate-microbial interactions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Rivas, Ariel L ; Jankowski, Mark D ; Piccinini, Renata ; Leitner, Gabriel ; Schwarz, Daniel ; Anderson, Kevin L ; Fair, Jeanne M ; Hoogesteijn, Almira L ; Wolter, Wilfried ; Chaffer, Marcelo ; Blum, Shlomo ; Were, Tom ; Konah, Stephen N ; Kempaiah, Prakash ; Ong'echa, John M ; Diesterbeck, Ulrike S ; Pilla, Rachel ; Czerny, Claus-Peter ; Hittner, James B ; Hyman, James M ; Perkins, Douglas J</creator><contributor>Carvalho, Luzia Helena</contributor><creatorcontrib>Rivas, Ariel L ; Jankowski, Mark D ; Piccinini, Renata ; Leitner, Gabriel ; Schwarz, Daniel ; Anderson, Kevin L ; Fair, Jeanne M ; Hoogesteijn, Almira L ; Wolter, Wilfried ; Chaffer, Marcelo ; Blum, Shlomo ; Were, Tom ; Konah, Stephen N ; Kempaiah, Prakash ; Ong'echa, John M ; Diesterbeck, Ulrike S ; Pilla, Rachel ; Czerny, Claus-Peter ; Hittner, James B ; Hyman, James M ; Perkins, Douglas J ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Carvalho, Luzia Helena</creatorcontrib><description>Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0053984</identifier><identifier>PMID: 23437039</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animal sciences ; Animals ; Antimicrobial agents ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; Biological evolution ; Biology ; birds ; Birds - virology ; blood counts ; Cattle ; Communicable diseases ; Data analysis ; Data processing ; Data structures ; Dimensional analysis ; Drug resistance ; Epidemiology ; Error detection ; Evolutionary design method ; False Negative Reactions ; Feedback ; Feedback, Physiological ; Host-Pathogen Interactions - physiology ; Humans ; Hygiene ; Infections ; Infectious diseases ; Information management ; Leukocytes ; Leukocytes (neutrophilic) ; Lymphocytes ; Macrophages ; Malaria ; Malaria - diagnosis ; Malaria - parasitology ; Mathematical analysis ; Medicine ; Methicillin ; methicillin-resistant staphylococcus aureus ; Methicillin-Resistant Staphylococcus aureus - physiology ; Microorganisms ; Prognosis ; Reproducibility of Results ; Spatial distribution ; Species Specificity ; staphylococcal infection ; Staphylococcus aureus ; Staphylococcus aureus infections ; statistical data ; Systems Biology ; Three dimensional analysis ; total cell counting ; Vector-borne diseases ; Vertebrates - microbiology ; Vertebrates - parasitology ; Vertebrates - virology ; Veterinary Science ; Viruses - metabolism ; white blood cells</subject><ispartof>PloS one, 2013-02, Vol.8 (2), p.e53984-e53984</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Rivas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Rivas et al 2013 Rivas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383</citedby><cites>FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1330880809/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1330880809?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23437039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1627578$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Carvalho, Luzia Helena</contributor><creatorcontrib>Rivas, Ariel L</creatorcontrib><creatorcontrib>Jankowski, Mark D</creatorcontrib><creatorcontrib>Piccinini, Renata</creatorcontrib><creatorcontrib>Leitner, Gabriel</creatorcontrib><creatorcontrib>Schwarz, Daniel</creatorcontrib><creatorcontrib>Anderson, Kevin L</creatorcontrib><creatorcontrib>Fair, Jeanne M</creatorcontrib><creatorcontrib>Hoogesteijn, Almira L</creatorcontrib><creatorcontrib>Wolter, Wilfried</creatorcontrib><creatorcontrib>Chaffer, Marcelo</creatorcontrib><creatorcontrib>Blum, Shlomo</creatorcontrib><creatorcontrib>Were, Tom</creatorcontrib><creatorcontrib>Konah, Stephen N</creatorcontrib><creatorcontrib>Kempaiah, Prakash</creatorcontrib><creatorcontrib>Ong'echa, John M</creatorcontrib><creatorcontrib>Diesterbeck, Ulrike S</creatorcontrib><creatorcontrib>Pilla, Rachel</creatorcontrib><creatorcontrib>Czerny, Claus-Peter</creatorcontrib><creatorcontrib>Hittner, James B</creatorcontrib><creatorcontrib>Hyman, James M</creatorcontrib><creatorcontrib>Perkins, Douglas J</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Feedback-based, system-level properties of vertebrate-microbial interactions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.</description><subject>Analysis</subject><subject>Animal sciences</subject><subject>Animals</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>birds</subject><subject>Birds - virology</subject><subject>blood counts</subject><subject>Cattle</subject><subject>Communicable diseases</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Data structures</subject><subject>Dimensional analysis</subject><subject>Drug resistance</subject><subject>Epidemiology</subject><subject>Error detection</subject><subject>Evolutionary design method</subject><subject>False Negative Reactions</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Humans</subject><subject>Hygiene</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Information management</subject><subject>Leukocytes</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lymphocytes</subject><subject>Macrophages</subject><subject>Malaria</subject><subject>Malaria - diagnosis</subject><subject>Malaria - parasitology</subject><subject>Mathematical analysis</subject><subject>Medicine</subject><subject>Methicillin</subject><subject>methicillin-resistant staphylococcus aureus</subject><subject>Methicillin-Resistant Staphylococcus aureus - physiology</subject><subject>Microorganisms</subject><subject>Prognosis</subject><subject>Reproducibility of Results</subject><subject>Spatial distribution</subject><subject>Species Specificity</subject><subject>staphylococcal infection</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus infections</subject><subject>statistical data</subject><subject>Systems Biology</subject><subject>Three dimensional analysis</subject><subject>total cell counting</subject><subject>Vector-borne diseases</subject><subject>Vertebrates - microbiology</subject><subject>Vertebrates - parasitology</subject><subject>Vertebrates - virology</subject><subject>Veterinary Science</subject><subject>Viruses - metabolism</subject><subject>white blood cells</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQHBVGwY25t0hdhWVwdGFjw9hrS9HQmY6YZk3Rwv73pTneZyj5IIQ3J7_xzrln2HKM5phx_2Ljed8rOd66DOUIFrQR7kJ3iipK8JIg-PNqfZE9C2AyQKMvH2QmhjHJEq9NseQnQ1Er_ymsVoHk_C9chwja3sAc723m3Ax8NhJlrZ_u0hdqrCPnWaO9qo-zMdBG80tG4LjzNHrXKBng2_s-yH5efvl98yZdXnxcX58tcc1zFnLcgClRUWAGioEirS9UKlHwSRVMpjASqMapJw4kSDW1xWgUTBQMoCaaCnmUvD7o764IcExEkphQJkayrRCwOROPURu682Sp_LZ0y8ubA-ZVUKS5tQbKC0rYERquSMVUKxXnNykq1pEjewaD1cXytr7fQaOiiV3YiOr3pzFqu3F7SgnPBSBJ4dRBwIRoZtImg19p1HegocUl4wYeY3o6vePe7hxDl1gQN1qoOXD8Eh0lZcIZoQl__g96fgpFaqRSl6VqXnNODqDxnXBDEcDX4Nr-HSl8DqcaptVqTzicG7yYGiYnwJ65UH4JcfPv6_-zVzyn75ohdg7JxHZztbxprCrIDmDowBA_tXSUwksNk3GZDDpMhx8lIZi-Oq3hndDsK9C8Gqwbr</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Rivas, Ariel L</creator><creator>Jankowski, Mark D</creator><creator>Piccinini, Renata</creator><creator>Leitner, Gabriel</creator><creator>Schwarz, Daniel</creator><creator>Anderson, Kevin L</creator><creator>Fair, Jeanne M</creator><creator>Hoogesteijn, Almira L</creator><creator>Wolter, Wilfried</creator><creator>Chaffer, Marcelo</creator><creator>Blum, Shlomo</creator><creator>Were, Tom</creator><creator>Konah, Stephen N</creator><creator>Kempaiah, Prakash</creator><creator>Ong'echa, John M</creator><creator>Diesterbeck, Ulrike S</creator><creator>Pilla, Rachel</creator><creator>Czerny, Claus-Peter</creator><creator>Hittner, James B</creator><creator>Hyman, James M</creator><creator>Perkins, Douglas J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130220</creationdate><title>Feedback-based, system-level properties of vertebrate-microbial interactions</title><author>Rivas, Ariel L ; Jankowski, Mark D ; Piccinini, Renata ; Leitner, Gabriel ; Schwarz, Daniel ; Anderson, Kevin L ; Fair, Jeanne M ; Hoogesteijn, Almira L ; Wolter, Wilfried ; Chaffer, Marcelo ; Blum, Shlomo ; Were, Tom ; Konah, Stephen N ; Kempaiah, Prakash ; Ong'echa, John M ; Diesterbeck, Ulrike S ; Pilla, Rachel ; Czerny, Claus-Peter ; Hittner, James B ; Hyman, James M ; Perkins, Douglas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Animal sciences</topic><topic>Animals</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>birds</topic><topic>Birds - virology</topic><topic>blood counts</topic><topic>Cattle</topic><topic>Communicable diseases</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Data structures</topic><topic>Dimensional analysis</topic><topic>Drug resistance</topic><topic>Epidemiology</topic><topic>Error detection</topic><topic>Evolutionary design method</topic><topic>False Negative Reactions</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Humans</topic><topic>Hygiene</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Information management</topic><topic>Leukocytes</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lymphocytes</topic><topic>Macrophages</topic><topic>Malaria</topic><topic>Malaria - diagnosis</topic><topic>Malaria - parasitology</topic><topic>Mathematical analysis</topic><topic>Medicine</topic><topic>Methicillin</topic><topic>methicillin-resistant staphylococcus aureus</topic><topic>Methicillin-Resistant Staphylococcus aureus - physiology</topic><topic>Microorganisms</topic><topic>Prognosis</topic><topic>Reproducibility of Results</topic><topic>Spatial distribution</topic><topic>Species Specificity</topic><topic>staphylococcal infection</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus infections</topic><topic>statistical data</topic><topic>Systems Biology</topic><topic>Three dimensional analysis</topic><topic>total cell counting</topic><topic>Vector-borne diseases</topic><topic>Vertebrates - microbiology</topic><topic>Vertebrates - parasitology</topic><topic>Vertebrates - virology</topic><topic>Veterinary Science</topic><topic>Viruses - metabolism</topic><topic>white blood cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivas, Ariel L</creatorcontrib><creatorcontrib>Jankowski, Mark D</creatorcontrib><creatorcontrib>Piccinini, Renata</creatorcontrib><creatorcontrib>Leitner, Gabriel</creatorcontrib><creatorcontrib>Schwarz, Daniel</creatorcontrib><creatorcontrib>Anderson, Kevin L</creatorcontrib><creatorcontrib>Fair, Jeanne M</creatorcontrib><creatorcontrib>Hoogesteijn, Almira L</creatorcontrib><creatorcontrib>Wolter, Wilfried</creatorcontrib><creatorcontrib>Chaffer, Marcelo</creatorcontrib><creatorcontrib>Blum, Shlomo</creatorcontrib><creatorcontrib>Were, Tom</creatorcontrib><creatorcontrib>Konah, Stephen N</creatorcontrib><creatorcontrib>Kempaiah, Prakash</creatorcontrib><creatorcontrib>Ong'echa, John M</creatorcontrib><creatorcontrib>Diesterbeck, Ulrike S</creatorcontrib><creatorcontrib>Pilla, Rachel</creatorcontrib><creatorcontrib>Czerny, Claus-Peter</creatorcontrib><creatorcontrib>Hittner, James B</creatorcontrib><creatorcontrib>Hyman, James M</creatorcontrib><creatorcontrib>Perkins, Douglas J</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivas, Ariel L</au><au>Jankowski, Mark D</au><au>Piccinini, Renata</au><au>Leitner, Gabriel</au><au>Schwarz, Daniel</au><au>Anderson, Kevin L</au><au>Fair, Jeanne M</au><au>Hoogesteijn, Almira L</au><au>Wolter, Wilfried</au><au>Chaffer, Marcelo</au><au>Blum, Shlomo</au><au>Were, Tom</au><au>Konah, Stephen N</au><au>Kempaiah, Prakash</au><au>Ong'echa, John M</au><au>Diesterbeck, Ulrike S</au><au>Pilla, Rachel</au><au>Czerny, Claus-Peter</au><au>Hittner, James B</au><au>Hyman, James M</au><au>Perkins, Douglas J</au><au>Carvalho, Luzia Helena</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback-based, system-level properties of vertebrate-microbial interactions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-02-20</date><risdate>2013</risdate><volume>8</volume><issue>2</issue><spage>e53984</spage><epage>e53984</epage><pages>e53984-e53984</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23437039</pmid><doi>10.1371/journal.pone.0053984</doi><tpages>e53984</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-02, Vol.8 (2), p.e53984-e53984
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1330880809
source Publicly Available Content Database; PubMed Central
subjects Analysis
Animal sciences
Animals
Antimicrobial agents
Bacteria
BASIC BIOLOGICAL SCIENCES
Biological evolution
Biology
birds
Birds - virology
blood counts
Cattle
Communicable diseases
Data analysis
Data processing
Data structures
Dimensional analysis
Drug resistance
Epidemiology
Error detection
Evolutionary design method
False Negative Reactions
Feedback
Feedback, Physiological
Host-Pathogen Interactions - physiology
Humans
Hygiene
Infections
Infectious diseases
Information management
Leukocytes
Leukocytes (neutrophilic)
Lymphocytes
Macrophages
Malaria
Malaria - diagnosis
Malaria - parasitology
Mathematical analysis
Medicine
Methicillin
methicillin-resistant staphylococcus aureus
Methicillin-Resistant Staphylococcus aureus - physiology
Microorganisms
Prognosis
Reproducibility of Results
Spatial distribution
Species Specificity
staphylococcal infection
Staphylococcus aureus
Staphylococcus aureus infections
statistical data
Systems Biology
Three dimensional analysis
total cell counting
Vector-borne diseases
Vertebrates - microbiology
Vertebrates - parasitology
Vertebrates - virology
Veterinary Science
Viruses - metabolism
white blood cells
title Feedback-based, system-level properties of vertebrate-microbial interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback-based,%20system-level%20properties%20of%20vertebrate-microbial%20interactions&rft.jtitle=PloS%20one&rft.au=Rivas,%20Ariel%20L&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2013-02-20&rft.volume=8&rft.issue=2&rft.spage=e53984&rft.epage=e53984&rft.pages=e53984-e53984&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0053984&rft_dat=%3Cgale_plos_%3EA478204192%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c719t-7fe850591ae03ea2fc6af8034385d9a1080b10b2d72a8d3f1a8d84854ee621383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1330880809&rft_id=info:pmid/23437039&rft_galeid=A478204192&rfr_iscdi=true