Loading…
Optogenetically induced seizure and the longitudinal hippocampal network dynamics
Epileptic seizure is a paroxysmal and self-limited phenomenon characterized by abnormal hypersynchrony of a large population of neurons. However, our current understanding of seizure dynamics is still limited. Here we propose a novel in vivo model of seizure-like afterdischarges using optogenetics,...
Saved in:
Published in: | PloS one 2013-04, Vol.8 (4), p.e60928-e60928 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epileptic seizure is a paroxysmal and self-limited phenomenon characterized by abnormal hypersynchrony of a large population of neurons. However, our current understanding of seizure dynamics is still limited. Here we propose a novel in vivo model of seizure-like afterdischarges using optogenetics, and report on investigation of directional network dynamics during seizure along the septo-temporal (ST) axis of hippocampus. Repetitive pulse photostimulation was applied to the rodent hippocampus, in which channelrhodopsin-2 (ChR2) was expressed, under simultaneous recording of local field potentials (LFPs). Seizure-like afterdischarges were successfully induced after the stimulation in both W-TChR2V4 transgenic (ChR2V-TG) rats and in wild type rats transfected with adeno-associated virus (AAV) vectors carrying ChR2. Pulse frequency at 10 and 20 Hz, and a 0.05 duty ratio were optimal for afterdischarge induction. Immunohistochemical c-Fos staining after a single induced afterdischarge confirmed neuronal activation of the entire hippocampus. LFPs were recorded during seizure-like afterdischarges with a multi-contact array electrode inserted along the ST axis of hippocampus. Granger causality analysis of the LFPs showed a bidirectional but asymmetric increase in signal flow along the ST direction. State space presentation of the causality and coherence revealed three discrete states of the seizure-like afterdischarge phenomenon: 1) resting state; 2) afterdischarge initiation with moderate coherence and dominant septal-to-temporal causality; and 3) afterdischarge termination with increased coherence and dominant temporal-to-septal causality. A novel in vivo model of seizure-like afterdischarge was developed using optogenetics, which was advantageous in its reproducibility and artifact-free electrophysiological observations. Our results provide additional evidence for the potential role of hippocampal septo-temporal interactions in seizure dynamics in vivo. Bidirectional networks work hierarchically along the ST hippocampus in the genesis and termination of epileptic seizures. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0060928 |