Loading…
Tertiary origin and pleistocene diversification of dragon blood tree (Dracaena cambodiana-Asparagaceae) populations in the Asian tropical forests
The origin of extraordinarily rich biodiversity in tropical forests is often attributed to evolution under stable climatic conditions over a long period or to climatic fluctuations during the recent Quaternary period. Here, we test these two hypotheses using Dracaena cambodiana, a plant species dist...
Saved in:
Published in: | PloS one 2013-04, Vol.8 (4), p.e60102-e60102 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The origin of extraordinarily rich biodiversity in tropical forests is often attributed to evolution under stable climatic conditions over a long period or to climatic fluctuations during the recent Quaternary period. Here, we test these two hypotheses using Dracaena cambodiana, a plant species distributed in paleotropical forests.
WE ANALYZED NUCLEOTIDE SEQUENCE DATA OF TWO CHLOROPLAST DNA (CPDNA: atpB-rbcL and trnD-trnT) regions and genotype data of six nuclear microsatellites from 15 populations (140 and 363 individuals, respectively) distributed in Indochina Peninsular and Hainan Island to infer the patterns of genetic diversity and phylogeographic structure. The population bottleneck and genetic drift were estimated based upon nuclear microsatellites data using the software programs BOTTLENECK and 2MOD. The lineage divergence times and past population dynamics based on cpDNA data were estimated using coalescent-based isolation-with-migration (IMa) and BEAST software programs.
A significant phylogeographic structure (N ST = 0.876, G ST = 0.796, F ST-SSR = 0.329, R ST = 0.449; N ST>G ST, R ST>F ST-SSR, P |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0060102 |