Loading…
CD160Ig fusion protein targets a novel costimulatory pathway and prolongs allograft survival
CD160 is a cell surface molecule expressed by most NK cells and approximately 50% of CD8(+) cytotoxic T lymphocytes. Engagement of CD160 by MHC class-I directly triggers a costimulatory signal to TCR-induced proliferation, cytokine production and cytotoxic effector functions. The role of CD160 in al...
Saved in:
Published in: | PloS one 2013-04, Vol.8 (4), p.e60391 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CD160 is a cell surface molecule expressed by most NK cells and approximately 50% of CD8(+) cytotoxic T lymphocytes. Engagement of CD160 by MHC class-I directly triggers a costimulatory signal to TCR-induced proliferation, cytokine production and cytotoxic effector functions. The role of CD160 in alloimmunity is unknown. Using a newly generated CD160 fusion protein (CD160Ig) we examined the role of the novel costimulatory molecule CD160 in mediating CD4(+) or CD8(+) T cell driven allograft rejection. CD160Ig inhibits alloreactive CD8(+) T cell proliferation and IFN-γ production in vitro, in particular in the absence of CD28 costimulation. Consequently CD160Ig prolongs fully mismatched cardiac allograft survival in CD4(-/-), CD28(-/-) knockout and CTLA4Ig treated WT recipients, but not in WT or CD8(-/-) knockout recipients. The prolonged cardiac allograft survival is associated with reduced alloreactive CD8(+) T cell proliferation, effector/memory responses and alloreactive IFN-γ production. Thus, CD160 signaling is particularly important in CD28-independent effector/memory CD8(+) alloreactive T cell activation in vivo and therefore may serve as a novel target for prevention of allograft rejection. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0060391 |