Loading…

Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin

The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 sub...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012, Vol.7 (11), p.e47304
Main Authors: Jallu, Vincent, Poulain, Pierre, Fuchs, Patrick F J, Kaplan, Cecile, de Brevern, Alexandre G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3
cites cdi_FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3
container_end_page
container_issue 11
container_start_page e47304
container_title PloS one
container_volume 7
creator Jallu, Vincent
Poulain, Pierre
Fuchs, Patrick F J
Kaplan, Cecile
de Brevern, Alexandre G
description The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions. A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains. These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function.
doi_str_mv 10.1371/journal.pone.0047304
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1339094462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b1ad9d8c77b4accb21a782623237f4d</doaj_id><sourcerecordid>2952514741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3</originalsourceid><addsrcrecordid>eNp1kt1u0zAcxSMEYmPwBggscbsUf8WJuZhUTYNWKoILuLb8ldZVYgc7mdQH4IHgQXgmkjWrNiSubB2f8_vb1smy1wguECnR-30YopfNogveLiCkJYH0SXaOOME5w5A8fbA_y16ktIewIBVjz7MzTFBREMbPs5-fg7GN81sgvQFtaKweGhmBOXjZOp1AqMHq6zJH8s6QIwW60BzaELudS236AGxdW92PRg_6nQWpj4Puh2in5CT8-U1AGtTgXX-Sfq3XatKd7-02Ov8ye1bLJtlX83qRff948-16lW--fFpfLze5pmVFc8aUQcZQSApoIC9qZAolKyS5JowyIyulObEGy8JoyjWmRitVQVUoDFmtyUX29sjtmpDE_INJIEI45JQyPDrWR4cJci-66FoZDyJIJ-6EELdCxt7pxopKIWm4qXRZKiq1VhjJssIjBJOypmZkXc3TBtVao63vo2weQR-feLcT23ArCOUV5tNlLo-A3T-x1XIjnE82tgJCjhmD8BaN9nfzvBh-DDb1_3khPbp0DClFW5_ICIqpWfcpMTVLzM0aY28ePuYUuq8S-QvFds83</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1339094462</pqid></control><display><type>article</type><title>Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Jallu, Vincent ; Poulain, Pierre ; Fuchs, Patrick F J ; Kaplan, Cecile ; de Brevern, Alexandre G</creator><contributor>Miyata, Toshiyuki</contributor><creatorcontrib>Jallu, Vincent ; Poulain, Pierre ; Fuchs, Patrick F J ; Kaplan, Cecile ; de Brevern, Alexandre G ; Miyata, Toshiyuki</creatorcontrib><description>The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions. A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains. These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0047304</identifier><identifier>PMID: 23155369</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alleles ; Antigens ; Antigens, Human Platelet ; Antigens, Human Platelet - chemistry ; Antigens, Human Platelet - genetics ; Biochemistry, Molecular Biology ; Bioinformatics ; Biology ; Blood platelets ; Bond strength ; Chemistry ; Computer Science ; Computer simulation ; Dynamic structural analysis ; Epitopes ; Epitopes - chemistry ; Epitopes - genetics ; Flexibility ; Genotype ; Hematology ; Human health and pathology ; Humans ; Immune response ; Immune system ; Isoimmunization ; Knee ; Leucine ; Life Sciences ; Medicine ; Models, Genetic ; Molecular dynamics ; Molecular Dynamics Simulation ; Mutagenesis ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex ; Platelet Glycoprotein GPIIb-IIIa Complex - chemistry ; Platelet Glycoprotein GPIIb-IIIa Complex - genetics ; Platelets ; Polymorphism ; Polymorphism, Genetic ; Proline ; Proteins ; Quantitative Methods ; Risk factors ; Three dimensional models ; Thrombocytopenia ; Thromboembolism ; Thrombosis</subject><ispartof>PloS one, 2012, Vol.7 (11), p.e47304</ispartof><rights>2012 Jallu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2012 Jallu et al 2012 Jallu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3</citedby><cites>FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3</cites><orcidid>0000-0003-4177-3619 ; 0000-0001-7112-5626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1339094462/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1339094462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4021,25751,27921,27922,27923,37010,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23155369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00926600$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Miyata, Toshiyuki</contributor><creatorcontrib>Jallu, Vincent</creatorcontrib><creatorcontrib>Poulain, Pierre</creatorcontrib><creatorcontrib>Fuchs, Patrick F J</creatorcontrib><creatorcontrib>Kaplan, Cecile</creatorcontrib><creatorcontrib>de Brevern, Alexandre G</creatorcontrib><title>Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions. A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains. These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function.</description><subject>Algorithms</subject><subject>Alleles</subject><subject>Antigens</subject><subject>Antigens, Human Platelet</subject><subject>Antigens, Human Platelet - chemistry</subject><subject>Antigens, Human Platelet - genetics</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Blood platelets</subject><subject>Bond strength</subject><subject>Chemistry</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Dynamic structural analysis</subject><subject>Epitopes</subject><subject>Epitopes - chemistry</subject><subject>Epitopes - genetics</subject><subject>Flexibility</subject><subject>Genotype</subject><subject>Hematology</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Isoimmunization</subject><subject>Knee</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Models, Genetic</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - chemistry</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - genetics</subject><subject>Platelets</subject><subject>Polymorphism</subject><subject>Polymorphism, Genetic</subject><subject>Proline</subject><subject>Proteins</subject><subject>Quantitative Methods</subject><subject>Risk factors</subject><subject>Three dimensional models</subject><subject>Thrombocytopenia</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kt1u0zAcxSMEYmPwBggscbsUf8WJuZhUTYNWKoILuLb8ldZVYgc7mdQH4IHgQXgmkjWrNiSubB2f8_vb1smy1wguECnR-30YopfNogveLiCkJYH0SXaOOME5w5A8fbA_y16ktIewIBVjz7MzTFBREMbPs5-fg7GN81sgvQFtaKweGhmBOXjZOp1AqMHq6zJH8s6QIwW60BzaELudS236AGxdW92PRg_6nQWpj4Puh2in5CT8-U1AGtTgXX-Sfq3XatKd7-02Ov8ye1bLJtlX83qRff948-16lW--fFpfLze5pmVFc8aUQcZQSApoIC9qZAolKyS5JowyIyulObEGy8JoyjWmRitVQVUoDFmtyUX29sjtmpDE_INJIEI45JQyPDrWR4cJci-66FoZDyJIJ-6EELdCxt7pxopKIWm4qXRZKiq1VhjJssIjBJOypmZkXc3TBtVao63vo2weQR-feLcT23ArCOUV5tNlLo-A3T-x1XIjnE82tgJCjhmD8BaN9nfzvBh-DDb1_3khPbp0DClFW5_ICIqpWfcpMTVLzM0aY28ePuYUuq8S-QvFds83</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Jallu, Vincent</creator><creator>Poulain, Pierre</creator><creator>Fuchs, Patrick F J</creator><creator>Kaplan, Cecile</creator><creator>de Brevern, Alexandre G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4177-3619</orcidid><orcidid>https://orcid.org/0000-0001-7112-5626</orcidid></search><sort><creationdate>2012</creationdate><title>Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin</title><author>Jallu, Vincent ; Poulain, Pierre ; Fuchs, Patrick F J ; Kaplan, Cecile ; de Brevern, Alexandre G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Alleles</topic><topic>Antigens</topic><topic>Antigens, Human Platelet</topic><topic>Antigens, Human Platelet - chemistry</topic><topic>Antigens, Human Platelet - genetics</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Blood platelets</topic><topic>Bond strength</topic><topic>Chemistry</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Dynamic structural analysis</topic><topic>Epitopes</topic><topic>Epitopes - chemistry</topic><topic>Epitopes - genetics</topic><topic>Flexibility</topic><topic>Genotype</topic><topic>Hematology</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Isoimmunization</topic><topic>Knee</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Models, Genetic</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - chemistry</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - genetics</topic><topic>Platelets</topic><topic>Polymorphism</topic><topic>Polymorphism, Genetic</topic><topic>Proline</topic><topic>Proteins</topic><topic>Quantitative Methods</topic><topic>Risk factors</topic><topic>Three dimensional models</topic><topic>Thrombocytopenia</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jallu, Vincent</creatorcontrib><creatorcontrib>Poulain, Pierre</creatorcontrib><creatorcontrib>Fuchs, Patrick F J</creatorcontrib><creatorcontrib>Kaplan, Cecile</creatorcontrib><creatorcontrib>de Brevern, Alexandre G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (ProQuest Medical &amp; Health Databases)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jallu, Vincent</au><au>Poulain, Pierre</au><au>Fuchs, Patrick F J</au><au>Kaplan, Cecile</au><au>de Brevern, Alexandre G</au><au>Miyata, Toshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e47304</spage><pages>e47304-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The HPA-1 alloimmune system carried by the platelet integrin αIIbβ3 is the primary cause of alloimmune thrombocytopenia in Caucasians and the HPA-1b allele might be a risk factor for thrombosis. HPA-1a and -1b alleles are defined by a leucine and a proline, respectively, at position 33 in the β3 subunit. Although the structure of αIIbβ3 is available, little is known about structural effects of the L33P substitution and its consequences on immune response and integrin functions. A complete 3D model of the L33-β3 extracellular domain was built and a P33 model was obtained by in silico mutagenesis. We then performed molecular dynamics simulations. Analyses focused on the PSI, I-EGF-1, and I-EGF-2 domains and confirmed higher exposure of residue 33 in the L33 β3 form. These analyses also showed major structural flexibility of all three domains in both forms, but increased flexibility in the P33 β3 form. The L33P substitution does not alter the local structure (residues 33 to 35) of the PSI domain, but modifies the structural equilibrium of the three domains. These results provide a better understanding of HPA-1 epitopes complexity and alloimmunization prevalence of HPA-1a. P33 gain of structure flexibility in the β3 knee may explain the increased adhesion capacity of HPA-1b platelets and the associated thrombotic risk. Our study provides important new insights into the relationship between HPA-1 variants and β3 structure that suggest possible effects on the alloimmune response and platelet function.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23155369</pmid><doi>10.1371/journal.pone.0047304</doi><orcidid>https://orcid.org/0000-0003-4177-3619</orcidid><orcidid>https://orcid.org/0000-0001-7112-5626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012, Vol.7 (11), p.e47304
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1339094462
source PubMed Central (Open Access); Publicly Available Content Database
subjects Algorithms
Alleles
Antigens
Antigens, Human Platelet
Antigens, Human Platelet - chemistry
Antigens, Human Platelet - genetics
Biochemistry, Molecular Biology
Bioinformatics
Biology
Blood platelets
Bond strength
Chemistry
Computer Science
Computer simulation
Dynamic structural analysis
Epitopes
Epitopes - chemistry
Epitopes - genetics
Flexibility
Genotype
Hematology
Human health and pathology
Humans
Immune response
Immune system
Isoimmunization
Knee
Leucine
Life Sciences
Medicine
Models, Genetic
Molecular dynamics
Molecular Dynamics Simulation
Mutagenesis
Mutation
Platelet Glycoprotein GPIIb-IIIa Complex
Platelet Glycoprotein GPIIb-IIIa Complex - chemistry
Platelet Glycoprotein GPIIb-IIIa Complex - genetics
Platelets
Polymorphism
Polymorphism, Genetic
Proline
Proteins
Quantitative Methods
Risk factors
Three dimensional models
Thrombocytopenia
Thromboembolism
Thrombosis
title Modeling and molecular dynamics of HPA-1a and -1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20molecular%20dynamics%20of%20HPA-1a%20and%20-1b%20polymorphisms:%20effects%20on%20the%20structure%20of%20the%20%CE%B23%20subunit%20of%20the%20%CE%B1IIb%CE%B23%20integrin&rft.jtitle=PloS%20one&rft.au=Jallu,%20Vincent&rft.date=2012&rft.volume=7&rft.issue=11&rft.spage=e47304&rft.pages=e47304-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0047304&rft_dat=%3Cproquest_plos_%3E2952514741%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4784-66bd1dd40350d095f1d5ba81a9c3646da8bc93ed2a5dc49c24dcbb80b5b206fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1339094462&rft_id=info:pmid/23155369&rfr_iscdi=true