Loading…
Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?
The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, p...
Saved in:
Published in: | PloS one 2012-11, Vol.7 (11), p.e49101-e49101 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513 |
container_end_page | e49101 |
container_issue | 11 |
container_start_page | e49101 |
container_title | PloS one |
container_volume | 7 |
creator | Fainberg, Hernan P Bodley, Katherine Bacardit, Jaume Li, Dongfang Wessely, Frank Mongan, Nigel P Symonds, Michael E Clarke, Lynne Mostyn, Alison |
description | The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0, 7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn Meishan piglets exhibited increased C18∶1n9C and C20∶1n9 but lower C18∶0, C20∶4n6, and C22∶6n3 fatty acid content. Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18∶1n9C and glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver responses that prevent hypoglycaemia and reduce offspring mortality. |
doi_str_mv | 10.1371/journal.pone.0049101 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1339094817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477090482</galeid><doaj_id>oai_doaj_org_article_d6453ea98af54ca79cbfff3c07f0480c</doaj_id><sourcerecordid>A477090482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513</originalsourceid><addsrcrecordid>eNqNkl1vFCEUhidGY2v1HxidxMToxa4wMDD0QtM0fmxSbVI_bgnDHHbZsMMKjLH_XtadNjumF4YLCDzn5fDyFsVTjOaYcPxm7YfQKzff-h7mCFGBEb5XHGNBqhmrELl_sD4qHsW4RqgmDWMPi6OK4LqmNTkuvlxBN2joyh58r5Jy5caHPNl0Xdq-_Aw2rlRfbu3SQYqnpSqDd1AaH8oVbFWyujQqZVhp28V3j4sHRrkIT8b5pPj-4f2380-zi8uPi_Ozi5lmokoz2rFWCNFUAoHpTNMKI5hRNW9xRShFigpGOQjONcetrhCwCoAxrGmFeI3JSfF8r7t1PsrRiigxIQIJ2mCeicWe6Lxay22wGxWupVdW_t3wYSlVyO07kB3LVoASjTI11YoL3RpjiEbcINognbXejrcN7QY6DX0Kyk1Epye9Xcml_yUJFQ0hKAu8GgWC_zlATHJjowbnVLZ9yH1jjhuOsh0ZffEPevfrRmqp8gNsb3y-V-9E5RnlHInceJWp-R1UHh1srM65MTbvTwpeTwoyk-B3WqohRrn4evX_7OWPKfvygF2BcmkVvRuS9X2cgnQP6uBjDGBuTcZI7mJ_44bcxV6Osc9lzw4_6LboJufkD1d2-5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1339094817</pqid></control><display><type>article</type><title>Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Fainberg, Hernan P ; Bodley, Katherine ; Bacardit, Jaume ; Li, Dongfang ; Wessely, Frank ; Mongan, Nigel P ; Symonds, Michael E ; Clarke, Lynne ; Mostyn, Alison</creator><contributor>Turrens, Julio Francisco</contributor><creatorcontrib>Fainberg, Hernan P ; Bodley, Katherine ; Bacardit, Jaume ; Li, Dongfang ; Wessely, Frank ; Mongan, Nigel P ; Symonds, Michael E ; Clarke, Lynne ; Mostyn, Alison ; Turrens, Julio Francisco</creatorcontrib><description>The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0, 7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn Meishan piglets exhibited increased C18∶1n9C and C20∶1n9 but lower C18∶0, C20∶4n6, and C22∶6n3 fatty acid content. Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18∶1n9C and glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver responses that prevent hypoglycaemia and reduce offspring mortality.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0049101</identifier><identifier>PMID: 23155453</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Age Factors ; Agriculture ; Analysis ; Animals ; Animals, Newborn ; Artificial Intelligence ; Biochemical analysis ; Biology ; Birth weight ; Body composition ; Body composition (biology) ; Body Composition - genetics ; Body weight ; Cluster analysis ; Fatty acids ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Fatty liver ; Genotype ; Glycogen ; Health aspects ; Hogs ; Hypoglycemia ; Hypothermia ; Infant mortality ; Learning algorithms ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Liver ; Liver - metabolism ; Machine learning ; Medicine ; Metabolism ; Mitochondria, Liver - genetics ; Mitochondria, Liver - metabolism ; Mitochondrial Turnover - genetics ; Morphology ; Mortality ; Neonates ; Newborn babies ; Nutrition research ; Offspring ; Oils & fats ; Oxidation ; Physiology ; Progeny ; Science ; Suidae ; Swine ; Veterinary colleges ; Veterinary medicine</subject><ispartof>PloS one, 2012-11, Vol.7 (11), p.e49101-e49101</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Fainberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Fainberg et al 2012 Fainberg et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513</citedby><cites>FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1339094817/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1339094817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23155453$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Turrens, Julio Francisco</contributor><creatorcontrib>Fainberg, Hernan P</creatorcontrib><creatorcontrib>Bodley, Katherine</creatorcontrib><creatorcontrib>Bacardit, Jaume</creatorcontrib><creatorcontrib>Li, Dongfang</creatorcontrib><creatorcontrib>Wessely, Frank</creatorcontrib><creatorcontrib>Mongan, Nigel P</creatorcontrib><creatorcontrib>Symonds, Michael E</creatorcontrib><creatorcontrib>Clarke, Lynne</creatorcontrib><creatorcontrib>Mostyn, Alison</creatorcontrib><title>Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0, 7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn Meishan piglets exhibited increased C18∶1n9C and C20∶1n9 but lower C18∶0, C20∶4n6, and C22∶6n3 fatty acid content. Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18∶1n9C and glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver responses that prevent hypoglycaemia and reduce offspring mortality.</description><subject>Age</subject><subject>Age Factors</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Artificial Intelligence</subject><subject>Biochemical analysis</subject><subject>Biology</subject><subject>Birth weight</subject><subject>Body composition</subject><subject>Body composition (biology)</subject><subject>Body Composition - genetics</subject><subject>Body weight</subject><subject>Cluster analysis</subject><subject>Fatty acids</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty liver</subject><subject>Genotype</subject><subject>Glycogen</subject><subject>Health aspects</subject><subject>Hogs</subject><subject>Hypoglycemia</subject><subject>Hypothermia</subject><subject>Infant mortality</subject><subject>Learning algorithms</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mitochondria, Liver - genetics</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial Turnover - genetics</subject><subject>Morphology</subject><subject>Mortality</subject><subject>Neonates</subject><subject>Newborn babies</subject><subject>Nutrition research</subject><subject>Offspring</subject><subject>Oils & fats</subject><subject>Oxidation</subject><subject>Physiology</subject><subject>Progeny</subject><subject>Science</subject><subject>Suidae</subject><subject>Swine</subject><subject>Veterinary colleges</subject><subject>Veterinary medicine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1vFCEUhidGY2v1HxidxMToxa4wMDD0QtM0fmxSbVI_bgnDHHbZsMMKjLH_XtadNjumF4YLCDzn5fDyFsVTjOaYcPxm7YfQKzff-h7mCFGBEb5XHGNBqhmrELl_sD4qHsW4RqgmDWMPi6OK4LqmNTkuvlxBN2joyh58r5Jy5caHPNl0Xdq-_Aw2rlRfbu3SQYqnpSqDd1AaH8oVbFWyujQqZVhp28V3j4sHRrkIT8b5pPj-4f2380-zi8uPi_Ozi5lmokoz2rFWCNFUAoHpTNMKI5hRNW9xRShFigpGOQjONcetrhCwCoAxrGmFeI3JSfF8r7t1PsrRiigxIQIJ2mCeicWe6Lxay22wGxWupVdW_t3wYSlVyO07kB3LVoASjTI11YoL3RpjiEbcINognbXejrcN7QY6DX0Kyk1Epye9Xcml_yUJFQ0hKAu8GgWC_zlATHJjowbnVLZ9yH1jjhuOsh0ZffEPevfrRmqp8gNsb3y-V-9E5RnlHInceJWp-R1UHh1srM65MTbvTwpeTwoyk-B3WqohRrn4evX_7OWPKfvygF2BcmkVvRuS9X2cgnQP6uBjDGBuTcZI7mJ_44bcxV6Osc9lzw4_6LboJufkD1d2-5Q</recordid><startdate>20121114</startdate><enddate>20121114</enddate><creator>Fainberg, Hernan P</creator><creator>Bodley, Katherine</creator><creator>Bacardit, Jaume</creator><creator>Li, Dongfang</creator><creator>Wessely, Frank</creator><creator>Mongan, Nigel P</creator><creator>Symonds, Michael E</creator><creator>Clarke, Lynne</creator><creator>Mostyn, Alison</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121114</creationdate><title>Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?</title><author>Fainberg, Hernan P ; Bodley, Katherine ; Bacardit, Jaume ; Li, Dongfang ; Wessely, Frank ; Mongan, Nigel P ; Symonds, Michael E ; Clarke, Lynne ; Mostyn, Alison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Age</topic><topic>Age Factors</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Artificial Intelligence</topic><topic>Biochemical analysis</topic><topic>Biology</topic><topic>Birth weight</topic><topic>Body composition</topic><topic>Body composition (biology)</topic><topic>Body Composition - genetics</topic><topic>Body weight</topic><topic>Cluster analysis</topic><topic>Fatty acids</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty liver</topic><topic>Genotype</topic><topic>Glycogen</topic><topic>Health aspects</topic><topic>Hogs</topic><topic>Hypoglycemia</topic><topic>Hypothermia</topic><topic>Infant mortality</topic><topic>Learning algorithms</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mitochondria, Liver - genetics</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial Turnover - genetics</topic><topic>Morphology</topic><topic>Mortality</topic><topic>Neonates</topic><topic>Newborn babies</topic><topic>Nutrition research</topic><topic>Offspring</topic><topic>Oils & fats</topic><topic>Oxidation</topic><topic>Physiology</topic><topic>Progeny</topic><topic>Science</topic><topic>Suidae</topic><topic>Swine</topic><topic>Veterinary colleges</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fainberg, Hernan P</creatorcontrib><creatorcontrib>Bodley, Katherine</creatorcontrib><creatorcontrib>Bacardit, Jaume</creatorcontrib><creatorcontrib>Li, Dongfang</creatorcontrib><creatorcontrib>Wessely, Frank</creatorcontrib><creatorcontrib>Mongan, Nigel P</creatorcontrib><creatorcontrib>Symonds, Michael E</creatorcontrib><creatorcontrib>Clarke, Lynne</creatorcontrib><creatorcontrib>Mostyn, Alison</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fainberg, Hernan P</au><au>Bodley, Katherine</au><au>Bacardit, Jaume</au><au>Li, Dongfang</au><au>Wessely, Frank</au><au>Mongan, Nigel P</au><au>Symonds, Michael E</au><au>Clarke, Lynne</au><au>Mostyn, Alison</au><au>Turrens, Julio Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-11-14</date><risdate>2012</risdate><volume>7</volume><issue>11</issue><spage>e49101</spage><epage>e49101</epage><pages>e49101-e49101</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0, 7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn Meishan piglets exhibited increased C18∶1n9C and C20∶1n9 but lower C18∶0, C20∶4n6, and C22∶6n3 fatty acid content. Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18∶1n9C and glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver responses that prevent hypoglycaemia and reduce offspring mortality.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23155453</pmid><doi>10.1371/journal.pone.0049101</doi><tpages>e49101</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-11, Vol.7 (11), p.e49101-e49101 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1339094817 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Age Age Factors Agriculture Analysis Animals Animals, Newborn Artificial Intelligence Biochemical analysis Biology Birth weight Body composition Body composition (biology) Body Composition - genetics Body weight Cluster analysis Fatty acids Fatty Acids - genetics Fatty Acids - metabolism Fatty liver Genotype Glycogen Health aspects Hogs Hypoglycemia Hypothermia Infant mortality Learning algorithms Lipid metabolism Lipid Metabolism - genetics Lipids Liver Liver - metabolism Machine learning Medicine Metabolism Mitochondria, Liver - genetics Mitochondria, Liver - metabolism Mitochondrial Turnover - genetics Morphology Mortality Neonates Newborn babies Nutrition research Offspring Oils & fats Oxidation Physiology Progeny Science Suidae Swine Veterinary colleges Veterinary medicine |
title | Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20neonatal%20mortality%20in%20Meishan%20piglets:%20a%20role%20for%20hepatic%20fatty%20acids?&rft.jtitle=PloS%20one&rft.au=Fainberg,%20Hernan%20P&rft.date=2012-11-14&rft.volume=7&rft.issue=11&rft.spage=e49101&rft.epage=e49101&rft.pages=e49101-e49101&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0049101&rft_dat=%3Cgale_plos_%3EA477090482%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-4d6b9998290efdf8b9f96fa57b123440a49647e977c71bc20e62ee661c4207513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1339094817&rft_id=info:pmid/23155453&rft_galeid=A477090482&rfr_iscdi=true |