Loading…

Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells

One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specif...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-05, Vol.7 (5), p.e37129-e37129
Main Authors: Noisa, Parinya, Ramasamy, Thamil Selvee, Lamont, Fiona R, Yu, Jason S L, Sheldon, Michael J, Russell, Alison, Jin, Xin, Cui, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3
cites cdi_FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3
container_end_page e37129
container_issue 5
container_start_page e37129
container_title PloS one
container_volume 7
creator Noisa, Parinya
Ramasamy, Thamil Selvee
Lamont, Fiona R
Yu, Jason S L
Sheldon, Michael J
Russell, Alison
Jin, Xin
Cui, Wei
description One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.
doi_str_mv 10.1371/journal.pone.0037129
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344321219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477083145</galeid><doaj_id>oai_doaj_org_article_76bcd92061bb4abb856f1e55086e7a2c</doaj_id><sourcerecordid>A477083145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLk0vbwIy-JlYGHB22tIk5NphjaZTVpxXvzspra7TGUfpIWGc37_c5J_c5LkOUYbTAv8bu8Gb0W7OTgLG4RiiFQPknNcUbLOCaIPT9ZnyZMQ9ggxWub54-SMkByzCpfnye-tAtsbbaTojbOpsCqVjfBC9uBNmIJOp30DKQjfHlNltAY_imLS7lIJbRtSY1MLgxftMj-Jm6ETNoWu9kdnjUxDD92ke5o80qIN8Gz-rpLvHz98u_y8vrr-tL28uFrLvCL9WqtaKkyZBFBFRSFDDGNRVUjqmNAl0gpkfCnSJUhCyqyotCJFBgxIVmq6Sl5OdQ-tC3y2LnBMs4wSTKJRq2Q7EcqJPT940wl_5E4Y_jfg_I4L3xvZAi_y2LQiKMd1nYm6LlmuMTCGyhwKQWSs9X7uNtQdKBnNiM4sii4z1jR8535yShkpCxILvJkLeHczQOh5Z8JomLDghrhvhFmWFxUZ9_3qH_T-083UTsQDGKtd7CvHovwiKwpUUpyxSG3uoeKjoDMy3jNtYnwheLsQRKaHX_1ODCHw7dcv_89e_1iyr0_YBkTbN8G1w3ihwhLMJlB6F4IHfWcyRnwck1s3-DgmfB6TKHtx-oPuRLdzQf8AhCYQwQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344321219</pqid></control><display><type>article</type><title>Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><creator>Noisa, Parinya ; Ramasamy, Thamil Selvee ; Lamont, Fiona R ; Yu, Jason S L ; Sheldon, Michael J ; Russell, Alison ; Jin, Xin ; Cui, Wei</creator><contributor>Ng, Huck H.</contributor><creatorcontrib>Noisa, Parinya ; Ramasamy, Thamil Selvee ; Lamont, Fiona R ; Yu, Jason S L ; Sheldon, Michael J ; Russell, Alison ; Jin, Xin ; Cui, Wei ; Ng, Huck H.</creatorcontrib><description>One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0037129</identifier><identifier>PMID: 22615918</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antigens ; Antigens, Surface - genetics ; Antigens, Surface - metabolism ; Bioinformatics ; Biology ; Cancer ; Cardiomyocytes ; Cell Differentiation - physiology ; Cells (biology) ; Cells, Cultured ; Cloning ; Cues ; Developmental biology ; Differentiation ; Down-Regulation ; Embryo cells ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Embryos ; Endoderm - cytology ; Endoderm - metabolism ; Endoderm - physiology ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Fibroblasts ; Gene Expression ; Genes ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Medicine ; Molecular modelling ; Neural stem cells ; Neurons - metabolism ; Oct-4 protein ; Octamer Transcription Factor-3 - genetics ; Octamer Transcription Factor-3 - metabolism ; Paired Box Transcription Factors - genetics ; Paired Box Transcription Factors - metabolism ; Pax6 protein ; PAX6 Transcription Factor ; Pluripotency ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Signaling ; SOXB1 Transcription Factors - genetics ; SOXB1 Transcription Factors - metabolism ; Stage-Specific Embryonic Antigens - genetics ; Stage-Specific Embryonic Antigens - metabolism ; Stem cells ; Surface antigens ; Surgery ; Up-Regulation</subject><ispartof>PloS one, 2012-05, Vol.7 (5), p.e37129-e37129</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Noisa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Noisa et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3</citedby><cites>FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1344321219/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1344321219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22615918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ng, Huck H.</contributor><creatorcontrib>Noisa, Parinya</creatorcontrib><creatorcontrib>Ramasamy, Thamil Selvee</creatorcontrib><creatorcontrib>Lamont, Fiona R</creatorcontrib><creatorcontrib>Yu, Jason S L</creatorcontrib><creatorcontrib>Sheldon, Michael J</creatorcontrib><creatorcontrib>Russell, Alison</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><title>Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.</description><subject>Antigens</subject><subject>Antigens, Surface - genetics</subject><subject>Antigens, Surface - metabolism</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cardiomyocytes</subject><subject>Cell Differentiation - physiology</subject><subject>Cells (biology)</subject><subject>Cells, Cultured</subject><subject>Cloning</subject><subject>Cues</subject><subject>Developmental biology</subject><subject>Differentiation</subject><subject>Down-Regulation</subject><subject>Embryo cells</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryos</subject><subject>Endoderm - cytology</subject><subject>Endoderm - metabolism</subject><subject>Endoderm - physiology</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Fibroblasts</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Medicine</subject><subject>Molecular modelling</subject><subject>Neural stem cells</subject><subject>Neurons - metabolism</subject><subject>Oct-4 protein</subject><subject>Octamer Transcription Factor-3 - genetics</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Paired Box Transcription Factors - genetics</subject><subject>Paired Box Transcription Factors - metabolism</subject><subject>Pax6 protein</subject><subject>PAX6 Transcription Factor</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Signaling</subject><subject>SOXB1 Transcription Factors - genetics</subject><subject>SOXB1 Transcription Factors - metabolism</subject><subject>Stage-Specific Embryonic Antigens - genetics</subject><subject>Stage-Specific Embryonic Antigens - metabolism</subject><subject>Stem cells</subject><subject>Surface antigens</subject><subject>Surgery</subject><subject>Up-Regulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLk0vbwIy-JlYGHB22tIk5NphjaZTVpxXvzspra7TGUfpIWGc37_c5J_c5LkOUYbTAv8bu8Gb0W7OTgLG4RiiFQPknNcUbLOCaIPT9ZnyZMQ9ggxWub54-SMkByzCpfnye-tAtsbbaTojbOpsCqVjfBC9uBNmIJOp30DKQjfHlNltAY_imLS7lIJbRtSY1MLgxftMj-Jm6ETNoWu9kdnjUxDD92ke5o80qIN8Gz-rpLvHz98u_y8vrr-tL28uFrLvCL9WqtaKkyZBFBFRSFDDGNRVUjqmNAl0gpkfCnSJUhCyqyotCJFBgxIVmq6Sl5OdQ-tC3y2LnBMs4wSTKJRq2Q7EcqJPT940wl_5E4Y_jfg_I4L3xvZAi_y2LQiKMd1nYm6LlmuMTCGyhwKQWSs9X7uNtQdKBnNiM4sii4z1jR8535yShkpCxILvJkLeHczQOh5Z8JomLDghrhvhFmWFxUZ9_3qH_T-083UTsQDGKtd7CvHovwiKwpUUpyxSG3uoeKjoDMy3jNtYnwheLsQRKaHX_1ODCHw7dcv_89e_1iyr0_YBkTbN8G1w3ihwhLMJlB6F4IHfWcyRnwck1s3-DgmfB6TKHtx-oPuRLdzQf8AhCYQwQ</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Noisa, Parinya</creator><creator>Ramasamy, Thamil Selvee</creator><creator>Lamont, Fiona R</creator><creator>Yu, Jason S L</creator><creator>Sheldon, Michael J</creator><creator>Russell, Alison</creator><creator>Jin, Xin</creator><creator>Cui, Wei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120515</creationdate><title>Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells</title><author>Noisa, Parinya ; Ramasamy, Thamil Selvee ; Lamont, Fiona R ; Yu, Jason S L ; Sheldon, Michael J ; Russell, Alison ; Jin, Xin ; Cui, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antigens</topic><topic>Antigens, Surface - genetics</topic><topic>Antigens, Surface - metabolism</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cardiomyocytes</topic><topic>Cell Differentiation - physiology</topic><topic>Cells (biology)</topic><topic>Cells, Cultured</topic><topic>Cloning</topic><topic>Cues</topic><topic>Developmental biology</topic><topic>Differentiation</topic><topic>Down-Regulation</topic><topic>Embryo cells</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryos</topic><topic>Endoderm - cytology</topic><topic>Endoderm - metabolism</topic><topic>Endoderm - physiology</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Fibroblasts</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Medicine</topic><topic>Molecular modelling</topic><topic>Neural stem cells</topic><topic>Neurons - metabolism</topic><topic>Oct-4 protein</topic><topic>Octamer Transcription Factor-3 - genetics</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Paired Box Transcription Factors - genetics</topic><topic>Paired Box Transcription Factors - metabolism</topic><topic>Pax6 protein</topic><topic>PAX6 Transcription Factor</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Signaling</topic><topic>SOXB1 Transcription Factors - genetics</topic><topic>SOXB1 Transcription Factors - metabolism</topic><topic>Stage-Specific Embryonic Antigens - genetics</topic><topic>Stage-Specific Embryonic Antigens - metabolism</topic><topic>Stem cells</topic><topic>Surface antigens</topic><topic>Surgery</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noisa, Parinya</creatorcontrib><creatorcontrib>Ramasamy, Thamil Selvee</creatorcontrib><creatorcontrib>Lamont, Fiona R</creatorcontrib><creatorcontrib>Yu, Jason S L</creatorcontrib><creatorcontrib>Sheldon, Michael J</creatorcontrib><creatorcontrib>Russell, Alison</creatorcontrib><creatorcontrib>Jin, Xin</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noisa, Parinya</au><au>Ramasamy, Thamil Selvee</au><au>Lamont, Fiona R</au><au>Yu, Jason S L</au><au>Sheldon, Michael J</au><au>Russell, Alison</au><au>Jin, Xin</au><au>Cui, Wei</au><au>Ng, Huck H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>7</volume><issue>5</issue><spage>e37129</spage><epage>e37129</epage><pages>e37129-e37129</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22615918</pmid><doi>10.1371/journal.pone.0037129</doi><tpages>e37129</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-05, Vol.7 (5), p.e37129-e37129
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1344321219
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费)
subjects Antigens
Antigens, Surface - genetics
Antigens, Surface - metabolism
Bioinformatics
Biology
Cancer
Cardiomyocytes
Cell Differentiation - physiology
Cells (biology)
Cells, Cultured
Cloning
Cues
Developmental biology
Differentiation
Down-Regulation
Embryo cells
Embryonic stem cells
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Embryos
Endoderm - cytology
Endoderm - metabolism
Endoderm - physiology
Eye Proteins - genetics
Eye Proteins - metabolism
Fibroblasts
Gene Expression
Genes
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
Medicine
Molecular modelling
Neural stem cells
Neurons - metabolism
Oct-4 protein
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
Paired Box Transcription Factors - genetics
Paired Box Transcription Factors - metabolism
Pax6 protein
PAX6 Transcription Factor
Pluripotency
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Repressor Proteins - genetics
Repressor Proteins - metabolism
Signaling
SOXB1 Transcription Factors - genetics
SOXB1 Transcription Factors - metabolism
Stage-Specific Embryonic Antigens - genetics
Stage-Specific Embryonic Antigens - metabolism
Stem cells
Surface antigens
Surgery
Up-Regulation
title Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20characterisation%20of%20the%20early%20differentiating%20cells%20in%20neural%20differentiation%20of%20human%20embryonic%20stem%20cells&rft.jtitle=PloS%20one&rft.au=Noisa,%20Parinya&rft.date=2012-05-15&rft.volume=7&rft.issue=5&rft.spage=e37129&rft.epage=e37129&rft.pages=e37129-e37129&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0037129&rft_dat=%3Cgale_plos_%3EA477083145%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-fdbcd135ceed793e40511a990cfbcdf80fdecdec30f8ec228479fd274e5e248f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1344321219&rft_id=info:pmid/22615918&rft_galeid=A477083145&rfr_iscdi=true