Loading…
Quantifying transmission of highly pathogenic and low pathogenicity H7N1 avian influenza in turkeys
Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999-2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogen...
Saved in:
Published in: | PloS one 2012-09, Vol.7 (9), p.e45059-e45059 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-c1171d4a95553c23f9a18dee02dc96391e1e8efc20c23e56cf1acd213f16101a3 |
---|---|
cites | |
container_end_page | e45059 |
container_issue | 9 |
container_start_page | e45059 |
container_title | PloS one |
container_volume | 7 |
creator | Saenz, Roberto A Essen, Steve C Brookes, Sharon M Iqbal, Munir Wood, James L N Grenfell, Bryan T McCauley, John W Brown, Ian H Gog, Julia R |
description | Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999-2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5-2.7) per day for HPAI, 2.01 (1.6-2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3-1.7) days) than for LPAI (7.65 (7.0-8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, [Formula: see text] is significantly lower for HPAI (3.01 (2.2-4.0)) than for LPAI (15.3 (11.8-19.7)). The comparison of transmission rates and [Formula: see text] are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. |
doi_str_mv | 10.1371/journal.pone.0045059 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1344509184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498262381</galeid><doaj_id>oai_doaj_org_article_f26eb4149c504da7ba42a4314e5910c7</doaj_id><sourcerecordid>A498262381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c1171d4a95553c23f9a18dee02dc96391e1e8efc20c23e56cf1acd213f16101a3</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWnnG6QqgroShUVx1tr1pkkXrz2NnYKy9PjZdNqg3qBchFr_M1v-5-ZJHlKyZzygr5ZuaG3YOYbZ3FOiMhIVt1LjmnF2SxnhN8_WB8lj7xfEZLxMs8fJkeME1YWOTlO1KcBbNDNVts2DT1Yv9bea2dT16SdbjuzTTcQOtei1SoFW6fG_TwI6bBNz4uPNIVrDTbVtjED2t8QV2kY-h-49Y-TBw0Yj0_G_0ny7f27r2fns4vLD4uz04uZyisWZorSgtYCqizLuGK8qYCWNSJhtapyXlGkWGKjGImbmOWqoaBqRnlDc0oo8JPk-V53Y5yXoz9eUi6iORUtRSQWe6J2sJKbXq-h30oHWv4NuL6V0AetDMqG5bgUVFQqI6KGYgmCgeBUYFZRooqo9XY8bViusVZoo31mIjrdsbqTrbuWu-tkWRkFXo0Cvbsa0AcZrVdoDFh0Q7w3KZmIRRUsoi_-Qe9-3Ui1EB8QK-HiuWonKk9FVbKc8ZJGan4HFb8a11rFZmp0jE8SXk8SIhPwV2hh8F4uvnz-f_by-5R9ecB2CCZ03pkhxO7zU1DsQdU773tsbk2mRO5m4cYNuZsFOc5CTHt2WKDbpJvm538AjV0EWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1344509184</pqid></control><display><type>article</type><title>Quantifying transmission of highly pathogenic and low pathogenicity H7N1 avian influenza in turkeys</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Saenz, Roberto A ; Essen, Steve C ; Brookes, Sharon M ; Iqbal, Munir ; Wood, James L N ; Grenfell, Bryan T ; McCauley, John W ; Brown, Ian H ; Gog, Julia R</creator><contributor>Boni, Maciej F.</contributor><creatorcontrib>Saenz, Roberto A ; Essen, Steve C ; Brookes, Sharon M ; Iqbal, Munir ; Wood, James L N ; Grenfell, Bryan T ; McCauley, John W ; Brown, Ian H ; Gog, Julia R ; Boni, Maciej F.</creatorcontrib><description>Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999-2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5-2.7) per day for HPAI, 2.01 (1.6-2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3-1.7) days) than for LPAI (7.65 (7.0-8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, [Formula: see text] is significantly lower for HPAI (3.01 (2.2-4.0)) than for LPAI (15.3 (11.8-19.7)). The comparison of transmission rates and [Formula: see text] are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0045059</identifier><identifier>PMID: 23028760</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Avian flu ; Avian influenza ; Biology ; Birds ; Chickens ; Disease transmission ; Diseases and pests ; Distribution ; Dynamic tests ; Epidemics ; Epidemiology ; Frequency dependence ; Group size ; Influenza ; Influenza A Virus, H7N1 Subtype - pathogenicity ; Influenza in Birds - transmission ; Influenza in Birds - virology ; Laboratories ; Mathematics ; Medicine ; Meleagridinae ; Models, Biological ; Mortality ; Outbreaks ; Pathogenicity ; Pathogens ; Population number ; Poultry ; Strains (organisms) ; Time Factors ; Turkeys ; Turkeys - virology ; Vaccination ; Veterinary Science ; Viruses</subject><ispartof>PloS one, 2012-09, Vol.7 (9), p.e45059-e45059</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Saenz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Saenz et al 2012 Saenz et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c1171d4a95553c23f9a18dee02dc96391e1e8efc20c23e56cf1acd213f16101a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1344509184/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1344509184?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23028760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Boni, Maciej F.</contributor><creatorcontrib>Saenz, Roberto A</creatorcontrib><creatorcontrib>Essen, Steve C</creatorcontrib><creatorcontrib>Brookes, Sharon M</creatorcontrib><creatorcontrib>Iqbal, Munir</creatorcontrib><creatorcontrib>Wood, James L N</creatorcontrib><creatorcontrib>Grenfell, Bryan T</creatorcontrib><creatorcontrib>McCauley, John W</creatorcontrib><creatorcontrib>Brown, Ian H</creatorcontrib><creatorcontrib>Gog, Julia R</creatorcontrib><title>Quantifying transmission of highly pathogenic and low pathogenicity H7N1 avian influenza in turkeys</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999-2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5-2.7) per day for HPAI, 2.01 (1.6-2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3-1.7) days) than for LPAI (7.65 (7.0-8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, [Formula: see text] is significantly lower for HPAI (3.01 (2.2-4.0)) than for LPAI (15.3 (11.8-19.7)). The comparison of transmission rates and [Formula: see text] are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.</description><subject>Animals</subject><subject>Avian flu</subject><subject>Avian influenza</subject><subject>Biology</subject><subject>Birds</subject><subject>Chickens</subject><subject>Disease transmission</subject><subject>Diseases and pests</subject><subject>Distribution</subject><subject>Dynamic tests</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Frequency dependence</subject><subject>Group size</subject><subject>Influenza</subject><subject>Influenza A Virus, H7N1 Subtype - pathogenicity</subject><subject>Influenza in Birds - transmission</subject><subject>Influenza in Birds - virology</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Medicine</subject><subject>Meleagridinae</subject><subject>Models, Biological</subject><subject>Mortality</subject><subject>Outbreaks</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Population number</subject><subject>Poultry</subject><subject>Strains (organisms)</subject><subject>Time Factors</subject><subject>Turkeys</subject><subject>Turkeys - virology</subject><subject>Vaccination</subject><subject>Veterinary Science</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggiISG42MWnnG6QqgroShUVx1tr1pkkXrz2NnYKy9PjZdNqg3qBchFr_M1v-5-ZJHlKyZzygr5ZuaG3YOYbZ3FOiMhIVt1LjmnF2SxnhN8_WB8lj7xfEZLxMs8fJkeME1YWOTlO1KcBbNDNVts2DT1Yv9bea2dT16SdbjuzTTcQOtei1SoFW6fG_TwI6bBNz4uPNIVrDTbVtjED2t8QV2kY-h-49Y-TBw0Yj0_G_0ny7f27r2fns4vLD4uz04uZyisWZorSgtYCqizLuGK8qYCWNSJhtapyXlGkWGKjGImbmOWqoaBqRnlDc0oo8JPk-V53Y5yXoz9eUi6iORUtRSQWe6J2sJKbXq-h30oHWv4NuL6V0AetDMqG5bgUVFQqI6KGYgmCgeBUYFZRooqo9XY8bViusVZoo31mIjrdsbqTrbuWu-tkWRkFXo0Cvbsa0AcZrVdoDFh0Q7w3KZmIRRUsoi_-Qe9-3Ui1EB8QK-HiuWonKk9FVbKc8ZJGan4HFb8a11rFZmp0jE8SXk8SIhPwV2hh8F4uvnz-f_by-5R9ecB2CCZ03pkhxO7zU1DsQdU773tsbk2mRO5m4cYNuZsFOc5CTHt2WKDbpJvm538AjV0EWg</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>Saenz, Roberto A</creator><creator>Essen, Steve C</creator><creator>Brookes, Sharon M</creator><creator>Iqbal, Munir</creator><creator>Wood, James L N</creator><creator>Grenfell, Bryan T</creator><creator>McCauley, John W</creator><creator>Brown, Ian H</creator><creator>Gog, Julia R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120918</creationdate><title>Quantifying transmission of highly pathogenic and low pathogenicity H7N1 avian influenza in turkeys</title><author>Saenz, Roberto A ; Essen, Steve C ; Brookes, Sharon M ; Iqbal, Munir ; Wood, James L N ; Grenfell, Bryan T ; McCauley, John W ; Brown, Ian H ; Gog, Julia R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c1171d4a95553c23f9a18dee02dc96391e1e8efc20c23e56cf1acd213f16101a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Avian flu</topic><topic>Avian influenza</topic><topic>Biology</topic><topic>Birds</topic><topic>Chickens</topic><topic>Disease transmission</topic><topic>Diseases and pests</topic><topic>Distribution</topic><topic>Dynamic tests</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Frequency dependence</topic><topic>Group size</topic><topic>Influenza</topic><topic>Influenza A Virus, H7N1 Subtype - pathogenicity</topic><topic>Influenza in Birds - transmission</topic><topic>Influenza in Birds - virology</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Medicine</topic><topic>Meleagridinae</topic><topic>Models, Biological</topic><topic>Mortality</topic><topic>Outbreaks</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Population number</topic><topic>Poultry</topic><topic>Strains (organisms)</topic><topic>Time Factors</topic><topic>Turkeys</topic><topic>Turkeys - virology</topic><topic>Vaccination</topic><topic>Veterinary Science</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saenz, Roberto A</creatorcontrib><creatorcontrib>Essen, Steve C</creatorcontrib><creatorcontrib>Brookes, Sharon M</creatorcontrib><creatorcontrib>Iqbal, Munir</creatorcontrib><creatorcontrib>Wood, James L N</creatorcontrib><creatorcontrib>Grenfell, Bryan T</creatorcontrib><creatorcontrib>McCauley, John W</creatorcontrib><creatorcontrib>Brown, Ian H</creatorcontrib><creatorcontrib>Gog, Julia R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saenz, Roberto A</au><au>Essen, Steve C</au><au>Brookes, Sharon M</au><au>Iqbal, Munir</au><au>Wood, James L N</au><au>Grenfell, Bryan T</au><au>McCauley, John W</au><au>Brown, Ian H</au><au>Gog, Julia R</au><au>Boni, Maciej F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying transmission of highly pathogenic and low pathogenicity H7N1 avian influenza in turkeys</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-09-18</date><risdate>2012</risdate><volume>7</volume><issue>9</issue><spage>e45059</spage><epage>e45059</epage><pages>e45059-e45059</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999-2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5-2.7) per day for HPAI, 2.01 (1.6-2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3-1.7) days) than for LPAI (7.65 (7.0-8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, [Formula: see text] is significantly lower for HPAI (3.01 (2.2-4.0)) than for LPAI (15.3 (11.8-19.7)). The comparison of transmission rates and [Formula: see text] are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23028760</pmid><doi>10.1371/journal.pone.0045059</doi><tpages>e45059</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-09, Vol.7 (9), p.e45059-e45059 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1344509184 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Animals Avian flu Avian influenza Biology Birds Chickens Disease transmission Diseases and pests Distribution Dynamic tests Epidemics Epidemiology Frequency dependence Group size Influenza Influenza A Virus, H7N1 Subtype - pathogenicity Influenza in Birds - transmission Influenza in Birds - virology Laboratories Mathematics Medicine Meleagridinae Models, Biological Mortality Outbreaks Pathogenicity Pathogens Population number Poultry Strains (organisms) Time Factors Turkeys Turkeys - virology Vaccination Veterinary Science Viruses |
title | Quantifying transmission of highly pathogenic and low pathogenicity H7N1 avian influenza in turkeys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20transmission%20of%20highly%20pathogenic%20and%20low%20pathogenicity%20H7N1%20avian%20influenza%20in%20turkeys&rft.jtitle=PloS%20one&rft.au=Saenz,%20Roberto%20A&rft.date=2012-09-18&rft.volume=7&rft.issue=9&rft.spage=e45059&rft.epage=e45059&rft.pages=e45059-e45059&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0045059&rft_dat=%3Cgale_plos_%3EA498262381%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-c1171d4a95553c23f9a18dee02dc96391e1e8efc20c23e56cf1acd213f16101a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1344509184&rft_id=info:pmid/23028760&rft_galeid=A498262381&rfr_iscdi=true |