Loading…

GenoSets: visual analytic methods for comparative genomics

Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these view...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-10, Vol.7 (10), p.e46401-e46401
Main Authors: Cain, Aurora A, Kosara, Robert, Gibas, Cynthia J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c758t-79be4e0dc84df91291f86abbf9f434df5ad70f74b74c3db05f5dbd0941b2a2833
cites
container_end_page e46401
container_issue 10
container_start_page e46401
container_title PloS one
container_volume 7
creator Cain, Aurora A
Kosara, Robert
Gibas, Cynthia J
description Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.
doi_str_mv 10.1371/journal.pone.0046401
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1345033358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543324122</galeid><doaj_id>oai_doaj_org_article_5b24bb30ee004026be0d920b97197b42</doaj_id><sourcerecordid>A543324122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-79be4e0dc84df91291f86abbf9f434df5ad70f74b74c3db05f5dbd0941b2a2833</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJw0eLPJN4F0jTBqDRpEgNuLX-2rpK4s52K_Xtcmk0N2gXxRazj5319zvEpitcQLCCu4aeNH0Iv2sXW92YBAKkIgE-KU8gwmlcI4KdH-5PiRYwbAChuqup5cYIwoBVi7LQ4uzS9vzEpnpU7FwfRliKb3iWnys6ktdextD6UyndbEURyO1OusqJzKr4snlnRRvNq_M-Kn1-__Lj4Nr-6vlxenF_NVU2bNK-ZNMQArRqiLYOIQdtUQkrLLME5RIWuga2JrInCWgJqqZYaMAIlEqjBeFa8PfhuWx_5WHbkEBMKMMa0ycTyQGgvNnwbXCfCHffC8b8BH1ZchFxSaziViEiJgTG5ZQBVMmfGEJCshqyWBGWvz-Ntg-yMVqZPQbQT0-lJ79Z85XcckwpXucOz4sNoEPztYGLinYvKtK3ojR9y3vlraF0RltF3_6CPVzdSK5ELcL31-V61N-XnlGCMCET7vBePUHlpkx8rz4h1OT4RfJwIMpPM77QSQ4x8efP9_9nrX1P2_RG7NqJN6-jbITnfxylIDqAKPsZg7EOTIeD7Eb_vBt-POB9HPMveHD_Qg-h-pvEf95H1AQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1345033358</pqid></control><display><type>article</type><title>GenoSets: visual analytic methods for comparative genomics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Cain, Aurora A ; Kosara, Robert ; Gibas, Cynthia J</creator><contributor>Raghava, Gajendra P. S.</contributor><creatorcontrib>Cain, Aurora A ; Kosara, Robert ; Gibas, Cynthia J ; Raghava, Gajendra P. S.</creatorcontrib><description>Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0046401</identifier><identifier>PMID: 23056299</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Analytics ; Annotations ; Bioinformatics ; Biology ; Brucella ; Brucella - genetics ; Brucella abortus ; Brucella melitensis ; Case studies ; Comparative analysis ; Computer programs ; Computer Science ; Data integration ; Data management ; Data processing ; Data warehouses ; Datasets ; Genes ; Genetic engineering ; Genome, Bacterial ; Genomes ; Genomic analysis ; Genomics ; Information management ; Integration ; Intelligence ; Intelligence (information) ; Mathematical analysis ; Methods ; Multidimensional data ; Orthology ; Queries ; Reasoning ; Sifting ; Strings ; Taxonomy ; Vaccines ; Visual fields ; Visualization (Computer)</subject><ispartof>PloS one, 2012-10, Vol.7 (10), p.e46401-e46401</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>Cain et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2012 Cain et al 2012 Cain et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-79be4e0dc84df91291f86abbf9f434df5ad70f74b74c3db05f5dbd0941b2a2833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1345033358/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1345033358?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23056299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Raghava, Gajendra P. S.</contributor><creatorcontrib>Cain, Aurora A</creatorcontrib><creatorcontrib>Kosara, Robert</creatorcontrib><creatorcontrib>Gibas, Cynthia J</creatorcontrib><title>GenoSets: visual analytic methods for comparative genomics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.</description><subject>Analysis</subject><subject>Analytics</subject><subject>Annotations</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Brucella</subject><subject>Brucella - genetics</subject><subject>Brucella abortus</subject><subject>Brucella melitensis</subject><subject>Case studies</subject><subject>Comparative analysis</subject><subject>Computer programs</subject><subject>Computer Science</subject><subject>Data integration</subject><subject>Data management</subject><subject>Data processing</subject><subject>Data warehouses</subject><subject>Datasets</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Information management</subject><subject>Integration</subject><subject>Intelligence</subject><subject>Intelligence (information)</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Multidimensional data</subject><subject>Orthology</subject><subject>Queries</subject><subject>Reasoning</subject><subject>Sifting</subject><subject>Strings</subject><subject>Taxonomy</subject><subject>Vaccines</subject><subject>Visual fields</subject><subject>Visualization (Computer)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYqPwDxBEQkJw0eLPJN4F0jTBqDRpEgNuLX-2rpK4s52K_Xtcmk0N2gXxRazj5319zvEpitcQLCCu4aeNH0Iv2sXW92YBAKkIgE-KU8gwmlcI4KdH-5PiRYwbAChuqup5cYIwoBVi7LQ4uzS9vzEpnpU7FwfRliKb3iWnys6ktdextD6UyndbEURyO1OusqJzKr4snlnRRvNq_M-Kn1-__Lj4Nr-6vlxenF_NVU2bNK-ZNMQArRqiLYOIQdtUQkrLLME5RIWuga2JrInCWgJqqZYaMAIlEqjBeFa8PfhuWx_5WHbkEBMKMMa0ycTyQGgvNnwbXCfCHffC8b8BH1ZchFxSaziViEiJgTG5ZQBVMmfGEJCshqyWBGWvz-Ntg-yMVqZPQbQT0-lJ79Z85XcckwpXucOz4sNoEPztYGLinYvKtK3ojR9y3vlraF0RltF3_6CPVzdSK5ELcL31-V61N-XnlGCMCET7vBePUHlpkx8rz4h1OT4RfJwIMpPM77QSQ4x8efP9_9nrX1P2_RG7NqJN6-jbITnfxylIDqAKPsZg7EOTIeD7Eb_vBt-POB9HPMveHD_Qg-h-pvEf95H1AQ</recordid><startdate>20121003</startdate><enddate>20121003</enddate><creator>Cain, Aurora A</creator><creator>Kosara, Robert</creator><creator>Gibas, Cynthia J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20121003</creationdate><title>GenoSets: visual analytic methods for comparative genomics</title><author>Cain, Aurora A ; Kosara, Robert ; Gibas, Cynthia J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-79be4e0dc84df91291f86abbf9f434df5ad70f74b74c3db05f5dbd0941b2a2833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Analytics</topic><topic>Annotations</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Brucella</topic><topic>Brucella - genetics</topic><topic>Brucella abortus</topic><topic>Brucella melitensis</topic><topic>Case studies</topic><topic>Comparative analysis</topic><topic>Computer programs</topic><topic>Computer Science</topic><topic>Data integration</topic><topic>Data management</topic><topic>Data processing</topic><topic>Data warehouses</topic><topic>Datasets</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Information management</topic><topic>Integration</topic><topic>Intelligence</topic><topic>Intelligence (information)</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Multidimensional data</topic><topic>Orthology</topic><topic>Queries</topic><topic>Reasoning</topic><topic>Sifting</topic><topic>Strings</topic><topic>Taxonomy</topic><topic>Vaccines</topic><topic>Visual fields</topic><topic>Visualization (Computer)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cain, Aurora A</creatorcontrib><creatorcontrib>Kosara, Robert</creatorcontrib><creatorcontrib>Gibas, Cynthia J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cain, Aurora A</au><au>Kosara, Robert</au><au>Gibas, Cynthia J</au><au>Raghava, Gajendra P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GenoSets: visual analytic methods for comparative genomics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-10-03</date><risdate>2012</risdate><volume>7</volume><issue>10</issue><spage>e46401</spage><epage>e46401</epage><pages>e46401-e46401</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many important questions in biology are, fundamentally, comparative, and this extends to our analysis of a growing number of sequenced genomes. Existing genomic analysis tools are often organized around literal views of genomes as linear strings. Even when information is highly condensed, these views grow cumbersome as larger numbers of genomes are added. Data aggregation and summarization methods from the field of visual analytics can provide abstracted comparative views, suitable for sifting large multi-genome datasets to identify critical similarities and differences. We introduce a software system for visual analysis of comparative genomics data. The system automates the process of data integration, and provides the analysis platform to identify and explore features of interest within these large datasets. GenoSets borrows techniques from business intelligence and visual analytics to provide a rich interface of interactive visualizations supported by a multi-dimensional data warehouse. In GenoSets, visual analytic approaches are used to enable querying based on orthology, functional assignment, and taxonomic or user-defined groupings of genomes. GenoSets links this information together with coordinated, interactive visualizations for both detailed and high-level categorical analysis of summarized data. GenoSets has been designed to simplify the exploration of multiple genome datasets and to facilitate reasoning about genomic comparisons. Case examples are included showing the use of this system in the analysis of 12 Brucella genomes. GenoSets software and the case study dataset are freely available at http://genosets.uncc.edu. We demonstrate that the integration of genomic data using a coordinated multiple view approach can simplify the exploration of large comparative genomic data sets, and facilitate reasoning about comparisons and features of interest.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23056299</pmid><doi>10.1371/journal.pone.0046401</doi><tpages>e46401</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2012-10, Vol.7 (10), p.e46401-e46401
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1345033358
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Analysis
Analytics
Annotations
Bioinformatics
Biology
Brucella
Brucella - genetics
Brucella abortus
Brucella melitensis
Case studies
Comparative analysis
Computer programs
Computer Science
Data integration
Data management
Data processing
Data warehouses
Datasets
Genes
Genetic engineering
Genome, Bacterial
Genomes
Genomic analysis
Genomics
Information management
Integration
Intelligence
Intelligence (information)
Mathematical analysis
Methods
Multidimensional data
Orthology
Queries
Reasoning
Sifting
Strings
Taxonomy
Vaccines
Visual fields
Visualization (Computer)
title GenoSets: visual analytic methods for comparative genomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GenoSets:%20visual%20analytic%20methods%20for%20comparative%20genomics&rft.jtitle=PloS%20one&rft.au=Cain,%20Aurora%20A&rft.date=2012-10-03&rft.volume=7&rft.issue=10&rft.spage=e46401&rft.epage=e46401&rft.pages=e46401-e46401&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0046401&rft_dat=%3Cgale_plos_%3EA543324122%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-79be4e0dc84df91291f86abbf9f434df5ad70f74b74c3db05f5dbd0941b2a2833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1345033358&rft_id=info:pmid/23056299&rft_galeid=A543324122&rfr_iscdi=true