Loading…

"Self" versus "non-self" connectivity dictates properties of synaptic transmission and plasticity

Autapses are connections between a neuron and itself. These connections are morphologically similar to "normal" synapses between two different neurons, and thus were long thought to have similar properties of synaptic transmission. However, this has not been directly tested. Here, using a...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-04, Vol.8 (4), p.e62414-e62414
Main Authors: Liu, Huisheng, Chapman, Edwin R, Dean, Camin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autapses are connections between a neuron and itself. These connections are morphologically similar to "normal" synapses between two different neurons, and thus were long thought to have similar properties of synaptic transmission. However, this has not been directly tested. Here, using a micro-island culture assay in which we can define the number of interconnected cells, we directly compared synaptic transmission in excitatory autapses and in two-neuron micronetworks consisting of two excitatory neurons, in which a neuron is connected to one other neuron and to itself. We discovered that autaptic synapses are optimized for maximal transmission, and exhibited enhanced EPSC amplitude, charge, and RRP size compared to interneuronal synapses. However, autapses are deficient in several aspects of synaptic plasticity. Short-term potentiation only became apparent when a neuron was connected to another neuron. This acquisition of plasticity only required reciprocal innervation with one other neuron; micronetworks consisting of just two interconnected neurons exhibited enhanced short-term plasticity in terms of paired pulse ratio (PPR) and release probability (Pr), compared to autapses. Interestingly, when a neuron was connected to another neuron, not only interneuronal synapses, but also the autaptic synapses on itself exhibited a trend toward enhanced short-term plasticity in terms of PPR and Pr. Thus neurons can distinguish whether they are connected via "self" or "non-self" synapses and have the ability to adjust their plasticity parameters when connected to other neurons.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0062414