Loading…
Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill
This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin sensitivity in ICU patients based on diagnosis and day of stay. An analysis of model-based insulin sensitivity for n=390 patients in a medical ICU (Christchurch, New Zealand). Two metrics are...
Saved in:
Published in: | PloS one 2013-02, Vol.8 (2), p.e57119-e57119 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653 |
container_end_page | e57119 |
container_issue | 2 |
container_start_page | e57119 |
container_title | PloS one |
container_volume | 8 |
creator | Ferenci, Tamás Benyó, Balázs Kovács, Levente Fisk, Liam Shaw, Geoffrey M Chase, J Geoffrey |
description | This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin sensitivity in ICU patients based on diagnosis and day of stay.
An analysis of model-based insulin sensitivity for n=390 patients in a medical ICU (Christchurch, New Zealand). Two metrics are defined to measure the variability of a patient's insulin sensitivity relative to predictions of a stochastic model created from the same data for all patients over all days of stay. The first selectively captures large increases related to the risk of hypoglycemia. The second captures overall variability. Distributions of per-patient variability scores were evaluated over different ICU days of stay and for different diagnosis groups based on APACHE III: operative and non-operative cardiac, gastric, all other. Linear and generalized linear mixed effects models assess the statistical significance of differences between groups and over days.
Variability defined by the two metrics was not substantially different. Variability was highest on day 1, and decreased over time (p |
doi_str_mv | 10.1371/journal.pone.0057119 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1351358431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478182571</galeid><doaj_id>oai_doaj_org_article_886abae87a2e4d039fa71edda83717d8</doaj_id><sourcerecordid>A478182571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpJZkvXhm0HpvgKFwr5uhSzJiYpipZKcLf9-J4tb4tGLYYGF_Lzv0Tk-pyieo2qOCEfvrsMQe-Xnm9DbeVVRjlDzoDhFDcEzhivy8Gh_UjxJ6RogIhh7XJxgUhNOsDgt2g_K-V1pt8EP2YW-DF3p-jR415fJ9sllt3V5V25VdKp1fr__5fKqjDZtrM5lDqVxatmH5BIoy7yypY4g08qDsfP-afGoUz7ZZ-P7rPjx6eP3iy-zy6vPi4vzy5lmDc4zLJBoNDNUt5RSy2uDDGEd5ZUg2OKOUcpbQy1pqUJNp5CGJCrGVWO6qmKUnBUvD74bH5Icy5MkIhSWqAkCYnEgTFDXchPdWsWdDMrJvwchLqWKcHNvpRBMtcoKrrCtTUUgIEfWGCWg9twI8Ho_RhvatTXa9jkqPzGdfundSi7DVhLKhUAYDN6MBjHcDDZluXZJW-9Vb8OwvzfCjHIuGKCv_kHvz26klgoScH0XIK7em8rzmkN1MfQIUPN7KHiMXTsNvdQ5OJ8I3k4EwGT7Oy_VkJJcfPv6_-zVzyn7-ohdWeXzKo1dmKZgfQB1DClF290VGVVyPwq31ZD7UZDjKIDsxfEPuhPd9j75A5FHBJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351358431</pqid></control><display><type>article</type><title>Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Ferenci, Tamás ; Benyó, Balázs ; Kovács, Levente ; Fisk, Liam ; Shaw, Geoffrey M ; Chase, J Geoffrey</creator><contributor>Emmert-Streib, Frank</contributor><creatorcontrib>Ferenci, Tamás ; Benyó, Balázs ; Kovács, Levente ; Fisk, Liam ; Shaw, Geoffrey M ; Chase, J Geoffrey ; Emmert-Streib, Frank</creatorcontrib><description>This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin sensitivity in ICU patients based on diagnosis and day of stay.
An analysis of model-based insulin sensitivity for n=390 patients in a medical ICU (Christchurch, New Zealand). Two metrics are defined to measure the variability of a patient's insulin sensitivity relative to predictions of a stochastic model created from the same data for all patients over all days of stay. The first selectively captures large increases related to the risk of hypoglycemia. The second captures overall variability. Distributions of per-patient variability scores were evaluated over different ICU days of stay and for different diagnosis groups based on APACHE III: operative and non-operative cardiac, gastric, all other. Linear and generalized linear mixed effects models assess the statistical significance of differences between groups and over days.
Variability defined by the two metrics was not substantially different. Variability was highest on day 1, and decreased over time (p<0.0001) in every diagnosis group. There were significant differences between some diagnosis groups: non-operative gastric patients were the least variable, while cardiac (operative and non-operative) patients exhibited the highest variability.
This study characterizes the variability and evolution of insulin sensitivity in critically ill patients, and may help inform the clinical management of metabolic dysfunction in critical care.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0057119</identifier><identifier>PMID: 23437328</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Analysis ; APACHE ; Biology ; Clinical medicine ; Computer Science ; Critical care ; Critical Illness - epidemiology ; Diabetes ; Diagnosis ; Electrical engineering ; Ethics ; Evolution ; Female ; Glucose ; Heart ; Heart diseases ; Hospital patients ; Humans ; Hypoglycemia ; Hypoglycemia - diagnosis ; Hypoglycemia - metabolism ; Informatics ; Information technology ; Insulin ; Insulin Resistance ; Intensive care ; Intensive Care Units ; Male ; Mathematical models ; Mathematics ; Mechanical engineering ; Medical diagnosis ; Medicine ; Middle Aged ; Models, Statistical ; Mortality ; New Zealand ; Patients ; Sensitivity ; Sensitivity analysis ; Statistical analysis ; Stochastic models ; Stochasticity ; Studies ; Variability</subject><ispartof>PloS one, 2013-02, Vol.8 (2), p.e57119-e57119</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Ferenci et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Ferenci et al 2013 Ferenci et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653</citedby><cites>FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1351358431/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1351358431?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23437328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Emmert-Streib, Frank</contributor><creatorcontrib>Ferenci, Tamás</creatorcontrib><creatorcontrib>Benyó, Balázs</creatorcontrib><creatorcontrib>Kovács, Levente</creatorcontrib><creatorcontrib>Fisk, Liam</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Chase, J Geoffrey</creatorcontrib><title>Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin sensitivity in ICU patients based on diagnosis and day of stay.
An analysis of model-based insulin sensitivity for n=390 patients in a medical ICU (Christchurch, New Zealand). Two metrics are defined to measure the variability of a patient's insulin sensitivity relative to predictions of a stochastic model created from the same data for all patients over all days of stay. The first selectively captures large increases related to the risk of hypoglycemia. The second captures overall variability. Distributions of per-patient variability scores were evaluated over different ICU days of stay and for different diagnosis groups based on APACHE III: operative and non-operative cardiac, gastric, all other. Linear and generalized linear mixed effects models assess the statistical significance of differences between groups and over days.
Variability defined by the two metrics was not substantially different. Variability was highest on day 1, and decreased over time (p<0.0001) in every diagnosis group. There were significant differences between some diagnosis groups: non-operative gastric patients were the least variable, while cardiac (operative and non-operative) patients exhibited the highest variability.
This study characterizes the variability and evolution of insulin sensitivity in critically ill patients, and may help inform the clinical management of metabolic dysfunction in critical care.</description><subject>Adult</subject><subject>Aged</subject><subject>Analysis</subject><subject>APACHE</subject><subject>Biology</subject><subject>Clinical medicine</subject><subject>Computer Science</subject><subject>Critical care</subject><subject>Critical Illness - epidemiology</subject><subject>Diabetes</subject><subject>Diagnosis</subject><subject>Electrical engineering</subject><subject>Ethics</subject><subject>Evolution</subject><subject>Female</subject><subject>Glucose</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Hospital patients</subject><subject>Humans</subject><subject>Hypoglycemia</subject><subject>Hypoglycemia - diagnosis</subject><subject>Hypoglycemia - metabolism</subject><subject>Informatics</subject><subject>Information technology</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Intensive care</subject><subject>Intensive Care Units</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanical engineering</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>New Zealand</subject><subject>Patients</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Variability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpJZkvXhm0HpvgKFwr5uhSzJiYpipZKcLf9-J4tb4tGLYYGF_Lzv0Tk-pyieo2qOCEfvrsMQe-Xnm9DbeVVRjlDzoDhFDcEzhivy8Gh_UjxJ6RogIhh7XJxgUhNOsDgt2g_K-V1pt8EP2YW-DF3p-jR415fJ9sllt3V5V25VdKp1fr__5fKqjDZtrM5lDqVxatmH5BIoy7yypY4g08qDsfP-afGoUz7ZZ-P7rPjx6eP3iy-zy6vPi4vzy5lmDc4zLJBoNDNUt5RSy2uDDGEd5ZUg2OKOUcpbQy1pqUJNp5CGJCrGVWO6qmKUnBUvD74bH5Icy5MkIhSWqAkCYnEgTFDXchPdWsWdDMrJvwchLqWKcHNvpRBMtcoKrrCtTUUgIEfWGCWg9twI8Ho_RhvatTXa9jkqPzGdfundSi7DVhLKhUAYDN6MBjHcDDZluXZJW-9Vb8OwvzfCjHIuGKCv_kHvz26klgoScH0XIK7em8rzmkN1MfQIUPN7KHiMXTsNvdQ5OJ8I3k4EwGT7Oy_VkJJcfPv6_-zVzyn7-ohdWeXzKo1dmKZgfQB1DClF290VGVVyPwq31ZD7UZDjKIDsxfEPuhPd9j75A5FHBJE</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Ferenci, Tamás</creator><creator>Benyó, Balázs</creator><creator>Kovács, Levente</creator><creator>Fisk, Liam</creator><creator>Shaw, Geoffrey M</creator><creator>Chase, J Geoffrey</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130221</creationdate><title>Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill</title><author>Ferenci, Tamás ; Benyó, Balázs ; Kovács, Levente ; Fisk, Liam ; Shaw, Geoffrey M ; Chase, J Geoffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Analysis</topic><topic>APACHE</topic><topic>Biology</topic><topic>Clinical medicine</topic><topic>Computer Science</topic><topic>Critical care</topic><topic>Critical Illness - epidemiology</topic><topic>Diabetes</topic><topic>Diagnosis</topic><topic>Electrical engineering</topic><topic>Ethics</topic><topic>Evolution</topic><topic>Female</topic><topic>Glucose</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Hospital patients</topic><topic>Humans</topic><topic>Hypoglycemia</topic><topic>Hypoglycemia - diagnosis</topic><topic>Hypoglycemia - metabolism</topic><topic>Informatics</topic><topic>Information technology</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Intensive care</topic><topic>Intensive Care Units</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanical engineering</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>New Zealand</topic><topic>Patients</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferenci, Tamás</creatorcontrib><creatorcontrib>Benyó, Balázs</creatorcontrib><creatorcontrib>Kovács, Levente</creatorcontrib><creatorcontrib>Fisk, Liam</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Chase, J Geoffrey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferenci, Tamás</au><au>Benyó, Balázs</au><au>Kovács, Levente</au><au>Fisk, Liam</au><au>Shaw, Geoffrey M</au><au>Chase, J Geoffrey</au><au>Emmert-Streib, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-02-21</date><risdate>2013</risdate><volume>8</volume><issue>2</issue><spage>e57119</spage><epage>e57119</epage><pages>e57119-e57119</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study examines the likelihood and evolution of overall and hypoglycemia-inducing variability of insulin sensitivity in ICU patients based on diagnosis and day of stay.
An analysis of model-based insulin sensitivity for n=390 patients in a medical ICU (Christchurch, New Zealand). Two metrics are defined to measure the variability of a patient's insulin sensitivity relative to predictions of a stochastic model created from the same data for all patients over all days of stay. The first selectively captures large increases related to the risk of hypoglycemia. The second captures overall variability. Distributions of per-patient variability scores were evaluated over different ICU days of stay and for different diagnosis groups based on APACHE III: operative and non-operative cardiac, gastric, all other. Linear and generalized linear mixed effects models assess the statistical significance of differences between groups and over days.
Variability defined by the two metrics was not substantially different. Variability was highest on day 1, and decreased over time (p<0.0001) in every diagnosis group. There were significant differences between some diagnosis groups: non-operative gastric patients were the least variable, while cardiac (operative and non-operative) patients exhibited the highest variability.
This study characterizes the variability and evolution of insulin sensitivity in critically ill patients, and may help inform the clinical management of metabolic dysfunction in critical care.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23437328</pmid><doi>10.1371/journal.pone.0057119</doi><tpages>e57119</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-02, Vol.8 (2), p.e57119-e57119 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1351358431 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adult Aged Analysis APACHE Biology Clinical medicine Computer Science Critical care Critical Illness - epidemiology Diabetes Diagnosis Electrical engineering Ethics Evolution Female Glucose Heart Heart diseases Hospital patients Humans Hypoglycemia Hypoglycemia - diagnosis Hypoglycemia - metabolism Informatics Information technology Insulin Insulin Resistance Intensive care Intensive Care Units Male Mathematical models Mathematics Mechanical engineering Medical diagnosis Medicine Middle Aged Models, Statistical Mortality New Zealand Patients Sensitivity Sensitivity analysis Statistical analysis Stochastic models Stochasticity Studies Variability |
title | Daily evolution of insulin sensitivity variability with respect to diagnosis in the critically ill |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20evolution%20of%20insulin%20sensitivity%20variability%20with%20respect%20to%20diagnosis%20in%20the%20critically%20ill&rft.jtitle=PloS%20one&rft.au=Ferenci,%20Tam%C3%A1s&rft.date=2013-02-21&rft.volume=8&rft.issue=2&rft.spage=e57119&rft.epage=e57119&rft.pages=e57119-e57119&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0057119&rft_dat=%3Cgale_plos_%3EA478182571%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-28189c6d5cb555e74d1d36f570832e2f6557bd5e3b5a19fa1c343067a9df00653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1351358431&rft_id=info:pmid/23437328&rft_galeid=A478182571&rfr_iscdi=true |