Loading…

Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures

Despite the importance of nitrous oxide (N2O) in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrificatio...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-05, Vol.8 (5), p.e63956
Main Authors: Farías, Laura, Faúndez, Juan, Fernández, Camila, Cornejo, Marcela, Sanhueza, Sandra, Carrasco, Cristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3
cites cdi_FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3
container_end_page
container_issue 5
container_start_page e63956
container_title PloS one
container_volume 8
creator Farías, Laura
Faúndez, Juan
Fernández, Camila
Cornejo, Marcela
Sanhueza, Sandra
Carrasco, Cristina
description Despite the importance of nitrous oxide (N2O) in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrification, which account for about a third of global emissions. Conversely, complete denitrification (the dissimilative reduction of N2O to N2) under suboxic/anoxic conditions is the only known pathway accountable for N2O consumption in the ocean. In this work, it is demonstrated that the biological assimilation of N2O could be a significant pathway capable of directly transforming this gas into particulate organic nitrogen (PON). N2O is shown to be biologically fixed within the subtropical and tropical waters of the eastern South Pacific Ocean, under a wide range of oceanographic conditions and at rates ranging from 2 pmol N L(-1) d(-) to 14.8 nmol N L(-1) d(-1) (mean ± SE of 0.522 ± 1.06 nmol N L(-1) d(-1), n = 93). Additional assays revealed that cultured cyanobacterial strains of Trichodesmium (H-9 and IMS 101), and Crocosphaera (W-8501) have the capacity to directly fix N2O under laboratory conditions; suggesting that marine photoautotrophic diazotrophs could be using N2O as a substrate. This metabolic capacity however was absent in Synechococcus (RCC 1029). The findings presented here indicate that assimilative N2O fixation takes place under extreme environmental conditions (i.e., light, nutrient, oxygen) where both autotrophic (including cyanobacteria) and heterotrophic microbes appear to be involved. This process could provide a globally significant sink for atmospheric N2O which in turn affects the oceanic N2O inventory and may also represent a yet unexplored global oceanic source of fixed N.
doi_str_mv 10.1371/journal.pone.0063956
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1354932380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9bd46fa8790940809826da82755bcb26</doaj_id><sourcerecordid>2978509051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3</originalsourceid><addsrcrecordid>eNp1klFvFCEUhYmxsbX6D4yS-OTDrjAwwLyY1Ka2TTauSeujIXcYZpfNFLbANPbfy7rTpjXxCQLnfJdDDkLvKJlTJunnTRijh2G-Dd7OCRGsqcULdEQbVs1ERdjLJ_tD9DqlDSE1U0K8QodVAciaiiP066sLQ1g5AwP-Xi1x735DdsFj53FeW3wGKdvo8VUY8xr_AON6Z_DSWPAYfIdvIDpvsbkHH1owResKyYxDHqNNb9BBD0Oyb6f1GP38dnZ9ejFbLM8vT08WM1MLkme16iXvqWlUz5UtbE4ldEQSyZkQwCWpDFhGpahLIsNFL1jFeiW4BNG2HTtGH_bc7RCSnn4macpqXgxMkaK43Cu6ABu9ja48_F4HcPrvQYgrDTE7M1jdtF2ZAEo2pOFEkUZVogNVybpuTVuJwvoyTRvbG9sZ63OE4Rn0-Y13a70Kd7qEKRReAJ_2gPU_touThd6dESpoQ7m4o0X7cRoWw-1oU_5PPL5XmRhSirZ_xFKid3V5cOldXfRUl2J7_zTJo-mhH-wPUae8eA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354932380</pqid></control><display><type>article</type><title>Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Farías, Laura ; Faúndez, Juan ; Fernández, Camila ; Cornejo, Marcela ; Sanhueza, Sandra ; Carrasco, Cristina</creator><contributor>Bertilsson, Stefan</contributor><creatorcontrib>Farías, Laura ; Faúndez, Juan ; Fernández, Camila ; Cornejo, Marcela ; Sanhueza, Sandra ; Carrasco, Cristina ; Bertilsson, Stefan</creatorcontrib><description>Despite the importance of nitrous oxide (N2O) in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrification, which account for about a third of global emissions. Conversely, complete denitrification (the dissimilative reduction of N2O to N2) under suboxic/anoxic conditions is the only known pathway accountable for N2O consumption in the ocean. In this work, it is demonstrated that the biological assimilation of N2O could be a significant pathway capable of directly transforming this gas into particulate organic nitrogen (PON). N2O is shown to be biologically fixed within the subtropical and tropical waters of the eastern South Pacific Ocean, under a wide range of oceanographic conditions and at rates ranging from 2 pmol N L(-1) d(-) to 14.8 nmol N L(-1) d(-1) (mean ± SE of 0.522 ± 1.06 nmol N L(-1) d(-1), n = 93). Additional assays revealed that cultured cyanobacterial strains of Trichodesmium (H-9 and IMS 101), and Crocosphaera (W-8501) have the capacity to directly fix N2O under laboratory conditions; suggesting that marine photoautotrophic diazotrophs could be using N2O as a substrate. This metabolic capacity however was absent in Synechococcus (RCC 1029). The findings presented here indicate that assimilative N2O fixation takes place under extreme environmental conditions (i.e., light, nutrient, oxygen) where both autotrophic (including cyanobacteria) and heterotrophic microbes appear to be involved. This process could provide a globally significant sink for atmospheric N2O which in turn affects the oceanic N2O inventory and may also represent a yet unexplored global oceanic source of fixed N.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0063956</identifier><identifier>PMID: 23717516</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anoxic conditions ; Aquatic Organisms - metabolism ; Atmospheric chemistry ; Bacteria ; Bacteriology ; Biogeochemistry ; Biology ; Chemistry ; Chile ; Climate change ; Cyanobacteria ; Cyanobacteria - metabolism ; Denitrification ; Earth Sciences ; Environmental conditions ; Fixation ; Flow cytometry ; Kinetics ; Laboratories ; Life Sciences ; Microbiology and Parasitology ; Nitrates ; Nitrification ; Nitrogen ; Nitrogen Fixation ; Nitrous oxide ; Nitrous Oxide - metabolism ; Nitrous oxides ; Oceanographic conditions ; Oceanography ; Oceans ; Organic nitrogen ; Oxidation ; Oxygen ; Oxygen - metabolism ; Ozone ; Ozone chemistry ; Pacific Ocean ; Particulate organic nitrogen ; Peru ; Sciences of the Universe ; Studies ; Substrates ; Synechococcus - metabolism</subject><ispartof>PloS one, 2013-05, Vol.8 (5), p.e63956</ispartof><rights>2013 Farías et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2013 Farías et al 2013 Farías et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3</citedby><cites>FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1354932380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1354932380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23717516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01619146$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Bertilsson, Stefan</contributor><creatorcontrib>Farías, Laura</creatorcontrib><creatorcontrib>Faúndez, Juan</creatorcontrib><creatorcontrib>Fernández, Camila</creatorcontrib><creatorcontrib>Cornejo, Marcela</creatorcontrib><creatorcontrib>Sanhueza, Sandra</creatorcontrib><creatorcontrib>Carrasco, Cristina</creatorcontrib><title>Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite the importance of nitrous oxide (N2O) in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrification, which account for about a third of global emissions. Conversely, complete denitrification (the dissimilative reduction of N2O to N2) under suboxic/anoxic conditions is the only known pathway accountable for N2O consumption in the ocean. In this work, it is demonstrated that the biological assimilation of N2O could be a significant pathway capable of directly transforming this gas into particulate organic nitrogen (PON). N2O is shown to be biologically fixed within the subtropical and tropical waters of the eastern South Pacific Ocean, under a wide range of oceanographic conditions and at rates ranging from 2 pmol N L(-1) d(-) to 14.8 nmol N L(-1) d(-1) (mean ± SE of 0.522 ± 1.06 nmol N L(-1) d(-1), n = 93). Additional assays revealed that cultured cyanobacterial strains of Trichodesmium (H-9 and IMS 101), and Crocosphaera (W-8501) have the capacity to directly fix N2O under laboratory conditions; suggesting that marine photoautotrophic diazotrophs could be using N2O as a substrate. This metabolic capacity however was absent in Synechococcus (RCC 1029). The findings presented here indicate that assimilative N2O fixation takes place under extreme environmental conditions (i.e., light, nutrient, oxygen) where both autotrophic (including cyanobacteria) and heterotrophic microbes appear to be involved. This process could provide a globally significant sink for atmospheric N2O which in turn affects the oceanic N2O inventory and may also represent a yet unexplored global oceanic source of fixed N.</description><subject>Anoxic conditions</subject><subject>Aquatic Organisms - metabolism</subject><subject>Atmospheric chemistry</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biogeochemistry</subject><subject>Biology</subject><subject>Chemistry</subject><subject>Chile</subject><subject>Climate change</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - metabolism</subject><subject>Denitrification</subject><subject>Earth Sciences</subject><subject>Environmental conditions</subject><subject>Fixation</subject><subject>Flow cytometry</subject><subject>Kinetics</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrous oxide</subject><subject>Nitrous Oxide - metabolism</subject><subject>Nitrous oxides</subject><subject>Oceanographic conditions</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Organic nitrogen</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Ozone</subject><subject>Ozone chemistry</subject><subject>Pacific Ocean</subject><subject>Particulate organic nitrogen</subject><subject>Peru</subject><subject>Sciences of the Universe</subject><subject>Studies</subject><subject>Substrates</subject><subject>Synechococcus - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1klFvFCEUhYmxsbX6D4yS-OTDrjAwwLyY1Ka2TTauSeujIXcYZpfNFLbANPbfy7rTpjXxCQLnfJdDDkLvKJlTJunnTRijh2G-Dd7OCRGsqcULdEQbVs1ERdjLJ_tD9DqlDSE1U0K8QodVAciaiiP066sLQ1g5AwP-Xi1x735DdsFj53FeW3wGKdvo8VUY8xr_AON6Z_DSWPAYfIdvIDpvsbkHH1owResKyYxDHqNNb9BBD0Oyb6f1GP38dnZ9ejFbLM8vT08WM1MLkme16iXvqWlUz5UtbE4ldEQSyZkQwCWpDFhGpahLIsNFL1jFeiW4BNG2HTtGH_bc7RCSnn4macpqXgxMkaK43Cu6ABu9ja48_F4HcPrvQYgrDTE7M1jdtF2ZAEo2pOFEkUZVogNVybpuTVuJwvoyTRvbG9sZ63OE4Rn0-Y13a70Kd7qEKRReAJ_2gPU_touThd6dESpoQ7m4o0X7cRoWw-1oU_5PPL5XmRhSirZ_xFKid3V5cOldXfRUl2J7_zTJo-mhH-wPUae8eA</recordid><startdate>20130523</startdate><enddate>20130523</enddate><creator>Farías, Laura</creator><creator>Faúndez, Juan</creator><creator>Fernández, Camila</creator><creator>Cornejo, Marcela</creator><creator>Sanhueza, Sandra</creator><creator>Carrasco, Cristina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130523</creationdate><title>Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures</title><author>Farías, Laura ; Faúndez, Juan ; Fernández, Camila ; Cornejo, Marcela ; Sanhueza, Sandra ; Carrasco, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anoxic conditions</topic><topic>Aquatic Organisms - metabolism</topic><topic>Atmospheric chemistry</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biogeochemistry</topic><topic>Biology</topic><topic>Chemistry</topic><topic>Chile</topic><topic>Climate change</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - metabolism</topic><topic>Denitrification</topic><topic>Earth Sciences</topic><topic>Environmental conditions</topic><topic>Fixation</topic><topic>Flow cytometry</topic><topic>Kinetics</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrous oxide</topic><topic>Nitrous Oxide - metabolism</topic><topic>Nitrous oxides</topic><topic>Oceanographic conditions</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Organic nitrogen</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Ozone</topic><topic>Ozone chemistry</topic><topic>Pacific Ocean</topic><topic>Particulate organic nitrogen</topic><topic>Peru</topic><topic>Sciences of the Universe</topic><topic>Studies</topic><topic>Substrates</topic><topic>Synechococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farías, Laura</creatorcontrib><creatorcontrib>Faúndez, Juan</creatorcontrib><creatorcontrib>Fernández, Camila</creatorcontrib><creatorcontrib>Cornejo, Marcela</creatorcontrib><creatorcontrib>Sanhueza, Sandra</creatorcontrib><creatorcontrib>Carrasco, Cristina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farías, Laura</au><au>Faúndez, Juan</au><au>Fernández, Camila</au><au>Cornejo, Marcela</au><au>Sanhueza, Sandra</au><au>Carrasco, Cristina</au><au>Bertilsson, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-05-23</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>e63956</spage><pages>e63956-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite the importance of nitrous oxide (N2O) in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrification, which account for about a third of global emissions. Conversely, complete denitrification (the dissimilative reduction of N2O to N2) under suboxic/anoxic conditions is the only known pathway accountable for N2O consumption in the ocean. In this work, it is demonstrated that the biological assimilation of N2O could be a significant pathway capable of directly transforming this gas into particulate organic nitrogen (PON). N2O is shown to be biologically fixed within the subtropical and tropical waters of the eastern South Pacific Ocean, under a wide range of oceanographic conditions and at rates ranging from 2 pmol N L(-1) d(-) to 14.8 nmol N L(-1) d(-1) (mean ± SE of 0.522 ± 1.06 nmol N L(-1) d(-1), n = 93). Additional assays revealed that cultured cyanobacterial strains of Trichodesmium (H-9 and IMS 101), and Crocosphaera (W-8501) have the capacity to directly fix N2O under laboratory conditions; suggesting that marine photoautotrophic diazotrophs could be using N2O as a substrate. This metabolic capacity however was absent in Synechococcus (RCC 1029). The findings presented here indicate that assimilative N2O fixation takes place under extreme environmental conditions (i.e., light, nutrient, oxygen) where both autotrophic (including cyanobacteria) and heterotrophic microbes appear to be involved. This process could provide a globally significant sink for atmospheric N2O which in turn affects the oceanic N2O inventory and may also represent a yet unexplored global oceanic source of fixed N.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23717516</pmid><doi>10.1371/journal.pone.0063956</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-05, Vol.8 (5), p.e63956
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1354932380
source Publicly Available Content Database; PubMed Central
subjects Anoxic conditions
Aquatic Organisms - metabolism
Atmospheric chemistry
Bacteria
Bacteriology
Biogeochemistry
Biology
Chemistry
Chile
Climate change
Cyanobacteria
Cyanobacteria - metabolism
Denitrification
Earth Sciences
Environmental conditions
Fixation
Flow cytometry
Kinetics
Laboratories
Life Sciences
Microbiology and Parasitology
Nitrates
Nitrification
Nitrogen
Nitrogen Fixation
Nitrous oxide
Nitrous Oxide - metabolism
Nitrous oxides
Oceanographic conditions
Oceanography
Oceans
Organic nitrogen
Oxidation
Oxygen
Oxygen - metabolism
Ozone
Ozone chemistry
Pacific Ocean
Particulate organic nitrogen
Peru
Sciences of the Universe
Studies
Substrates
Synechococcus - metabolism
title Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20N2O%20fixation%20in%20the%20Eastern%20South%20Pacific%20Ocean%20and%20marine%20cyanobacterial%20cultures&rft.jtitle=PloS%20one&rft.au=Far%C3%ADas,%20Laura&rft.date=2013-05-23&rft.volume=8&rft.issue=5&rft.spage=e63956&rft.pages=e63956-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0063956&rft_dat=%3Cproquest_plos_%3E2978509051%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-58f74f1c98f48ecea417ad07074366a4702cae31765932c46f6323f8647a6bbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1354932380&rft_id=info:pmid/23717516&rfr_iscdi=true