Loading…

Alternative Splicing of the Amelogenin Gene in a Caudate Amphibian, Plethodon cinereus

As the major enamel matrix protein contributing to tooth development, amelogenin has been demonstrated to play a crucial role in tooth enamel formation. Previous studies have revealed amelogenin alternative splicing as a mechanism for amelogenin heterogeneous expression in mammals. While amelogenin...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-06, Vol.8 (6), p.e68965-e68965
Main Authors: Wang, Xinping, Xing, Zeli, Zhang, Xichen, Zhu, Lisai, Diekwisch, Thomas G H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the major enamel matrix protein contributing to tooth development, amelogenin has been demonstrated to play a crucial role in tooth enamel formation. Previous studies have revealed amelogenin alternative splicing as a mechanism for amelogenin heterogeneous expression in mammals. While amelogenin and its splicing forms in mammalian vertebrates have been characterized, splicing variants of amelogenin gene still remains largely unknown in non-mammalian species. Here, using PCR and sequence analysis we discovered two novel amelogenin transcript variants in tooth organ extracts from a caudate amphibian, the salamander Plethodoncinereus. The one was shorter -S- (416 nucleotides including untranslated regions, 5 exons) and the other larger -L- (851 nt, 7 exons) than the previously published "normal" gene in this species -M- (812 nucleotides, 6 exons). This is the first report demonstrating the amelogenin alternative splicing in amphibian, revealing a unique exon 2b and two novel amelogenin gene transcripts in Plethodoncinereus.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0068965