Loading…

Towards an elastographic atlas of brain anatomy

Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional m...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-08, Vol.8 (8), p.e71807-e71807
Main Authors: Guo, Jing, Hirsch, Sebastian, Fehlner, Andreas, Papazoglou, Sebastian, Scheel, Michael, Braun, Juergen, Sack, Ingolf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43
cites cdi_FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43
container_end_page e71807
container_issue 8
container_start_page e71807
container_title PloS one
container_volume 8
creator Guo, Jing
Hirsch, Sebastian
Fehlner, Andreas
Papazoglou, Sebastian
Scheel, Michael
Braun, Juergen
Sack, Ingolf
description Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa), the corpus callosum genu (CCG; 1.104±0.280 kPa), the thalamus (TH; 1.058±0.208 kPa) and the head of the caudate nucleus (HCN; 0.649±0.101 kPa). φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172), TH (1.037±0.173), CN (0.906±0.257) and WM (0.854±0.169). The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.
doi_str_mv 10.1371/journal.pone.0071807
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1420689168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478288581</galeid><doaj_id>oai_doaj_org_article_371281009c9441b5b5d6f1bd34a7aa20</doaj_id><sourcerecordid>A478288581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43</originalsourceid><addsrcrecordid>eNqNkltrFDEUxwdRbF39BqILgujDbnObXF6EUrwsFApafQ1nkszsLLOTNcmo_fZmu9OyI32QPOT2O_-Tc_IvipcYLTEV-Gzjh9BDt9z53i0RElgi8ag4xYqSBSeIPj5anxTPYtwgVFLJ-dPihFAlBGbytDi79r8h2DiHfu46iMk3AXbr1swh5e3c1_MqQNvne0h-e_O8eFJDF92LcZ4V3z99vL74sri8-ry6OL9cGK5IWpSSIEMt5rYSphSScmkxY5YRV1IwpIZKYEVqWSNklTPESiOVY4YjzqhhdFa8PujuOh_1WGvUmBHEpcJcZmJ1IKyHjd6FdgvhRnto9e2BD42GkFrTOZ3bRSRGSBnFGK7KqrS8xpWlDARA7s-s-DBmG6qts8b1KUA3EZ3e9O1aN_5XVmZUlGUWeDcKBP9zcDHpbRuN6zronR9u3y2JQErxjL75B324upFqIBfQ9rXPec1eVJ8zIYmUpcSZWj5A5WHdtjXZGHWbzycB7ycBmUnuT2pgiFGvvn39f_bqx5R9e8SuHXRpHX03pNb3cQqyA2iCjzG4-r7JGOm9r--6ofe-1qOvc9ir4w-6D7ozMv0LLvDwTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420689168</pqid></control><display><type>article</type><title>Towards an elastographic atlas of brain anatomy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Guo, Jing ; Hirsch, Sebastian ; Fehlner, Andreas ; Papazoglou, Sebastian ; Scheel, Michael ; Braun, Juergen ; Sack, Ingolf</creator><creatorcontrib>Guo, Jing ; Hirsch, Sebastian ; Fehlner, Andreas ; Papazoglou, Sebastian ; Scheel, Michael ; Braun, Juergen ; Sack, Ingolf</creatorcontrib><description>Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa), the corpus callosum genu (CCG; 1.104±0.280 kPa), the thalamus (TH; 1.058±0.208 kPa) and the head of the caudate nucleus (HCN; 0.649±0.101 kPa). φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172), TH (1.037±0.173), CN (0.906±0.257) and WM (0.854±0.169). The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0071807</identifier><identifier>PMID: 23977148</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Alzheimer's disease ; Alzheimers disease ; Anatomy ; Biology ; Brain ; Brain - physiology ; Brain mapping ; Brain Mapping - methods ; Caudate nucleus ; Corpus callosum ; Elasticity Imaging Techniques - methods ; Female ; Fractals ; Head ; Healthy Volunteers ; Humans ; Image detection ; Magnetic resonance ; Magnetic Resonance Imaging ; Male ; Mathematics ; Medicine ; Middle Aged ; Multiple sclerosis ; Nervous system diseases ; Neurological diseases ; NMR ; Nuclear magnetic resonance ; Oscillations ; Shear modulus ; Spatial discrimination ; Spatial resolution ; Stiffness ; Substantia alba ; Thalamus ; Therapeutic applications ; Viscoelasticity ; Young Adult</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e71807-e71807</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Guo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Guo et al 2013 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43</citedby><cites>FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1420689168/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1420689168?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23977148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Hirsch, Sebastian</creatorcontrib><creatorcontrib>Fehlner, Andreas</creatorcontrib><creatorcontrib>Papazoglou, Sebastian</creatorcontrib><creatorcontrib>Scheel, Michael</creatorcontrib><creatorcontrib>Braun, Juergen</creatorcontrib><creatorcontrib>Sack, Ingolf</creatorcontrib><title>Towards an elastographic atlas of brain anatomy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa), the corpus callosum genu (CCG; 1.104±0.280 kPa), the thalamus (TH; 1.058±0.208 kPa) and the head of the caudate nucleus (HCN; 0.649±0.101 kPa). φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172), TH (1.037±0.173), CN (0.906±0.257) and WM (0.854±0.169). The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.</description><subject>Adult</subject><subject>Aged</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Anatomy</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Caudate nucleus</subject><subject>Corpus callosum</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Female</subject><subject>Fractals</subject><subject>Head</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Image detection</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mathematics</subject><subject>Medicine</subject><subject>Middle Aged</subject><subject>Multiple sclerosis</subject><subject>Nervous system diseases</subject><subject>Neurological diseases</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oscillations</subject><subject>Shear modulus</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Stiffness</subject><subject>Substantia alba</subject><subject>Thalamus</subject><subject>Therapeutic applications</subject><subject>Viscoelasticity</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltrFDEUxwdRbF39BqILgujDbnObXF6EUrwsFApafQ1nkszsLLOTNcmo_fZmu9OyI32QPOT2O_-Tc_IvipcYLTEV-Gzjh9BDt9z53i0RElgi8ag4xYqSBSeIPj5anxTPYtwgVFLJ-dPihFAlBGbytDi79r8h2DiHfu46iMk3AXbr1swh5e3c1_MqQNvne0h-e_O8eFJDF92LcZ4V3z99vL74sri8-ry6OL9cGK5IWpSSIEMt5rYSphSScmkxY5YRV1IwpIZKYEVqWSNklTPESiOVY4YjzqhhdFa8PujuOh_1WGvUmBHEpcJcZmJ1IKyHjd6FdgvhRnto9e2BD42GkFrTOZ3bRSRGSBnFGK7KqrS8xpWlDARA7s-s-DBmG6qts8b1KUA3EZ3e9O1aN_5XVmZUlGUWeDcKBP9zcDHpbRuN6zronR9u3y2JQErxjL75B324upFqIBfQ9rXPec1eVJ8zIYmUpcSZWj5A5WHdtjXZGHWbzycB7ycBmUnuT2pgiFGvvn39f_bqx5R9e8SuHXRpHX03pNb3cQqyA2iCjzG4-r7JGOm9r--6ofe-1qOvc9ir4w-6D7ozMv0LLvDwTg</recordid><startdate>20130814</startdate><enddate>20130814</enddate><creator>Guo, Jing</creator><creator>Hirsch, Sebastian</creator><creator>Fehlner, Andreas</creator><creator>Papazoglou, Sebastian</creator><creator>Scheel, Michael</creator><creator>Braun, Juergen</creator><creator>Sack, Ingolf</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130814</creationdate><title>Towards an elastographic atlas of brain anatomy</title><author>Guo, Jing ; Hirsch, Sebastian ; Fehlner, Andreas ; Papazoglou, Sebastian ; Scheel, Michael ; Braun, Juergen ; Sack, Ingolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Anatomy</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Caudate nucleus</topic><topic>Corpus callosum</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Female</topic><topic>Fractals</topic><topic>Head</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Image detection</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mathematics</topic><topic>Medicine</topic><topic>Middle Aged</topic><topic>Multiple sclerosis</topic><topic>Nervous system diseases</topic><topic>Neurological diseases</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oscillations</topic><topic>Shear modulus</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Stiffness</topic><topic>Substantia alba</topic><topic>Thalamus</topic><topic>Therapeutic applications</topic><topic>Viscoelasticity</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Hirsch, Sebastian</creatorcontrib><creatorcontrib>Fehlner, Andreas</creatorcontrib><creatorcontrib>Papazoglou, Sebastian</creatorcontrib><creatorcontrib>Scheel, Michael</creatorcontrib><creatorcontrib>Braun, Juergen</creatorcontrib><creatorcontrib>Sack, Ingolf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Hospital Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Materials Science &amp; Engineering</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jing</au><au>Hirsch, Sebastian</au><au>Fehlner, Andreas</au><au>Papazoglou, Sebastian</au><au>Scheel, Michael</au><au>Braun, Juergen</au><au>Sack, Ingolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards an elastographic atlas of brain anatomy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-14</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e71807</spage><epage>e71807</epage><pages>e71807-e71807</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa), the corpus callosum genu (CCG; 1.104±0.280 kPa), the thalamus (TH; 1.058±0.208 kPa) and the head of the caudate nucleus (HCN; 0.649±0.101 kPa). φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172), TH (1.037±0.173), CN (0.906±0.257) and WM (0.854±0.169). The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23977148</pmid><doi>10.1371/journal.pone.0071807</doi><tpages>e71807</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-08, Vol.8 (8), p.e71807-e71807
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1420689168
source Publicly Available Content Database; PubMed Central
subjects Adult
Aged
Alzheimer's disease
Alzheimers disease
Anatomy
Biology
Brain
Brain - physiology
Brain mapping
Brain Mapping - methods
Caudate nucleus
Corpus callosum
Elasticity Imaging Techniques - methods
Female
Fractals
Head
Healthy Volunteers
Humans
Image detection
Magnetic resonance
Magnetic Resonance Imaging
Male
Mathematics
Medicine
Middle Aged
Multiple sclerosis
Nervous system diseases
Neurological diseases
NMR
Nuclear magnetic resonance
Oscillations
Shear modulus
Spatial discrimination
Spatial resolution
Stiffness
Substantia alba
Thalamus
Therapeutic applications
Viscoelasticity
Young Adult
title Towards an elastographic atlas of brain anatomy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T10%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20an%20elastographic%20atlas%20of%20brain%20anatomy&rft.jtitle=PloS%20one&rft.au=Guo,%20Jing&rft.date=2013-08-14&rft.volume=8&rft.issue=8&rft.spage=e71807&rft.epage=e71807&rft.pages=e71807-e71807&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0071807&rft_dat=%3Cgale_plos_%3EA478288581%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-5820c3d16db7c578368d144d42e53ac2fab7192f8f00d9ec2d8c89e4c60643c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1420689168&rft_id=info:pmid/23977148&rft_galeid=A478288581&rfr_iscdi=true