Loading…

TLR accessory molecule RP105 (CD180) is involved in post-interventional vascular remodeling and soluble RP105 modulates neointima formation

RP105 (CD180) is TLR4 homologue lacking the intracellular TLR4 signaling domain and acts a TLR accessory molecule and physiological inhibitor of TLR4-signaling. The role of RP105 in vascular remodeling, in particular post-interventional remodeling is unknown. TLR4 and RP105 are expressed on vascular...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-07, Vol.8 (7), p.e67923-e67923
Main Authors: Karper, Jacco C, Ewing, Mark M, de Vries, Margreet R, de Jager, Saskia C A, Peters, Erna A B, de Boer, Hetty C, van Zonneveld, Anton-Jan, Kuiper, Johan, Huizinga, Eric G, Brondijk, T Harma C, Jukema, J Wouter, Quax, Paul H A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RP105 (CD180) is TLR4 homologue lacking the intracellular TLR4 signaling domain and acts a TLR accessory molecule and physiological inhibitor of TLR4-signaling. The role of RP105 in vascular remodeling, in particular post-interventional remodeling is unknown. TLR4 and RP105 are expressed on vascular smooth muscle cells (VSMC) as well as in the media of murine femoral artery segments as detected by qPCR and immunohistochemistry. Furthermore, the response to the TLR4 ligand LPS was stronger in VSMC from RP105(-/-) mice resulting in a higher proliferation rate. In RP105(-/-) mice femoral artery cuff placement resulted in an increase in neointima formation as compared to WT mice (4982 ± 974 µm(2) vs.1947 ± 278 µm(2),p = 0.0014). Local LPS application augmented neointima formation in both groups, but in RP105(-/-) mice this effect was more pronounced (10316±1243 µm(2) vs.4208 ± 555 µm(2),p = 0.0002), suggesting a functional role for RP105. For additional functional studies, the extracellular domain of murine RP105 was expressed with or without its adaptor protein MD1 and purified. SEC-MALSanalysis showed a functional 2∶2 homodimer formation of the RP105-MD1 complex. This protein complex was able to block the TLR4 response in whole blood ex-vivo. In vivo gene transfer of plasmid vectors encoding the extracellular part of RP105 and its adaptor protein MD1 were performed to initiate a stable endogenous soluble protein production. Expression of soluble RP105-MD1 resulted in a significant reduction in neointima formation in hypercholesterolemic mice (2500 ± 573 vs.6581 ± 1894 µm(2),p
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0067923