Loading…

PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions

Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiat...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-08, Vol.8 (8), p.e72674-e72674
Main Authors: Zotes, Teresa M, Arias, Cristina F, Fuster, José J, Spada, Roberto, Pérez-Yagüe, Sonia, Hirsch, Emilio, Wymann, Matthias, Carrera, Ana C, Andrés, Vicente, Barber, Domingo F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13
cites cdi_FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13
container_end_page e72674
container_issue 8
container_start_page e72674
container_title PloS one
container_volume 8
creator Zotes, Teresa M
Arias, Cristina F
Fuster, José J
Spada, Roberto
Pérez-Yagüe, Sonia
Hirsch, Emilio
Wymann, Matthias
Carrera, Ana C
Andrés, Vicente
Barber, Domingo F
description Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype (M2) are involved in progression to advanced atherosclerotic lesions. We studied the role of phosphoinositol-3-kinase (PI3K) p110γ in the regulation of in situ apoptosis, macrophage proliferation and polarization towards M1 or M2 phenotypes in atherosclerotic lesions. We analyzed atherosclerosis development in LDLR(-/-)p110γ(+/-) and LDLR(-/-)p110γ(-/-) mice, and performed expression and functional assays in tissues and primary cells from these and from p110γ(+/-) and p110γ(-/-) mice. Lack of p110γ in LDLR(-/-) mice reduces the atherosclerosis burden. Atherosclerotic lesions in fat-fed LDLR(-/-)p110γ(-/-) mice were smaller than in LDLR(-/-)p110γ(+/-) controls, which coincided with decreased macrophage proliferation in LDLR(-/-)p110γ(-/-) mouse lesions. This proliferation defect was also observed in p110γ(-/-) bone marrow-derived macrophages (BMM) stimulated with macrophage colony-stimulating factor (M-CSF), and was associated with higher intracellular cyclic adenosine monophosphate (cAMP) levels. In contrast, T cell proliferation was unaffected in LDLR(-/-)p110γ(-/-) mice. Moreover, p110γ deficiency did not affect macrophage polarization towards the M1 or M2 phenotypes or apoptosis in atherosclerotic plaques, or polarization in cultured BMM. Our results suggest that higher cAMP levels and the ensuing inhibition of macrophage proliferation contribute to atheroprotection in LDLR(-/-) mice lacking p110γ. Nonetheless, p110γ deletion does not appear to be involved in apoptosis, in macrophage polarization or in T cell proliferation.
doi_str_mv 10.1371/journal.pone.0072674
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1427238281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ded248cc842d4a938df200b5578127f5</doaj_id><sourcerecordid>1429213773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13</originalsourceid><addsrcrecordid>eNptkktuFDEQhlsIRELgBggssWEzg19td2-QoijAiEiwgLXlV8945LEb240UTsB9cg_OhGemEyWIjW39_utzVbma5iWCS0Q4ereNUwrSL8cY7BJCjhmnj5pT1BO8YBiSx_fOJ82znLcQtqRj7Glzgknfo0o5bX5_XZHPYEQI_rkBxnpbXAxAlmLDJIvNYDclF2xVNjbFrP1-dRmoa5CsmbQLa7CTOsVxI9cWjCl6N9gkDxg1FRBiAWP0MrlfRzEmIMc4lgPGBeBtrnJ-3jwZpM_2xbyfNd8_XH67-LS4-vJxdXF-tdAtZmVBmTKwH1TbEosxMsQoyggdOqo4p4oxopEx3SCNQpwZyCFXRPWS6870dEDkrHl95I4-ZjE3MQtEMcekw93esTo6TJRbMSa3k-laROnEQYhpLWQqrrZCGGsw7bTuKDZU9qQzA4awJsc7hPnQVtb7-bVJ7azRNpQk_QPow5vgNmIdfwrCWwghroC3MyDFH5PNRexc1tZ7GWycDnn3uP4kJ9X65h_r_6ujR1f9s5yTHe6SQVDsB-s2SuwHS8yDVcNe3S_kLuh2kshflGvPxA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427238281</pqid></control><display><type>article</type><title>PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zotes, Teresa M ; Arias, Cristina F ; Fuster, José J ; Spada, Roberto ; Pérez-Yagüe, Sonia ; Hirsch, Emilio ; Wymann, Matthias ; Carrera, Ana C ; Andrés, Vicente ; Barber, Domingo F</creator><contributor>Lutgens, Esther</contributor><creatorcontrib>Zotes, Teresa M ; Arias, Cristina F ; Fuster, José J ; Spada, Roberto ; Pérez-Yagüe, Sonia ; Hirsch, Emilio ; Wymann, Matthias ; Carrera, Ana C ; Andrés, Vicente ; Barber, Domingo F ; Lutgens, Esther</creatorcontrib><description>Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype (M2) are involved in progression to advanced atherosclerotic lesions. We studied the role of phosphoinositol-3-kinase (PI3K) p110γ in the regulation of in situ apoptosis, macrophage proliferation and polarization towards M1 or M2 phenotypes in atherosclerotic lesions. We analyzed atherosclerosis development in LDLR(-/-)p110γ(+/-) and LDLR(-/-)p110γ(-/-) mice, and performed expression and functional assays in tissues and primary cells from these and from p110γ(+/-) and p110γ(-/-) mice. Lack of p110γ in LDLR(-/-) mice reduces the atherosclerosis burden. Atherosclerotic lesions in fat-fed LDLR(-/-)p110γ(-/-) mice were smaller than in LDLR(-/-)p110γ(+/-) controls, which coincided with decreased macrophage proliferation in LDLR(-/-)p110γ(-/-) mouse lesions. This proliferation defect was also observed in p110γ(-/-) bone marrow-derived macrophages (BMM) stimulated with macrophage colony-stimulating factor (M-CSF), and was associated with higher intracellular cyclic adenosine monophosphate (cAMP) levels. In contrast, T cell proliferation was unaffected in LDLR(-/-)p110γ(-/-) mice. Moreover, p110γ deficiency did not affect macrophage polarization towards the M1 or M2 phenotypes or apoptosis in atherosclerotic plaques, or polarization in cultured BMM. Our results suggest that higher cAMP levels and the ensuing inhibition of macrophage proliferation contribute to atheroprotection in LDLR(-/-) mice lacking p110γ. Nonetheless, p110γ deletion does not appear to be involved in apoptosis, in macrophage polarization or in T cell proliferation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0072674</identifier><identifier>PMID: 23991137</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; Adenosine ; Adenosine monophosphate ; Animal tissues ; Animals ; Apoptosis ; Apoptosis - genetics ; Arteriosclerosis ; Atherosclerosis ; Atherosclerosis - genetics ; Atherosclerosis - physiopathology ; Biochemistry ; Biology ; Bone marrow ; Cell cycle ; Cell Proliferation ; Chemokines ; Class Ib Phosphatidylinositol 3-Kinase - genetics ; Class Ib Phosphatidylinositol 3-Kinase - physiology ; Clonal deletion ; Colony-stimulating factor ; Cyclic AMP ; Cyclic AMP - metabolism ; Defects ; Epidemiology ; Gene expression ; Granulocytes ; Immunology ; Infiltration ; Kinases ; Lesions ; Lipids ; Lipoprotein (low density) receptors ; Lipoproteins ; Low density lipoprotein receptors ; Lymphocytes ; Lymphocytes T ; Macrophage colony-stimulating factor ; Macrophages ; Macrophages - cytology ; Medicine ; Mice ; Mice, Knockout ; Monocytes ; Neutrophils ; Oncology ; Plaques ; Polarization ; Proteins ; Receptors, LDL - genetics ; Recruitment ; Rodents ; T cell receptors ; Veins &amp; arteries</subject><ispartof>PloS one, 2013-08, Vol.8 (8), p.e72674-e72674</ispartof><rights>2013 Zotes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Zotes et al 2013 Zotes et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13</citedby><cites>FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1427238281/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1427238281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23991137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lutgens, Esther</contributor><creatorcontrib>Zotes, Teresa M</creatorcontrib><creatorcontrib>Arias, Cristina F</creatorcontrib><creatorcontrib>Fuster, José J</creatorcontrib><creatorcontrib>Spada, Roberto</creatorcontrib><creatorcontrib>Pérez-Yagüe, Sonia</creatorcontrib><creatorcontrib>Hirsch, Emilio</creatorcontrib><creatorcontrib>Wymann, Matthias</creatorcontrib><creatorcontrib>Carrera, Ana C</creatorcontrib><creatorcontrib>Andrés, Vicente</creatorcontrib><creatorcontrib>Barber, Domingo F</creatorcontrib><title>PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype (M2) are involved in progression to advanced atherosclerotic lesions. We studied the role of phosphoinositol-3-kinase (PI3K) p110γ in the regulation of in situ apoptosis, macrophage proliferation and polarization towards M1 or M2 phenotypes in atherosclerotic lesions. We analyzed atherosclerosis development in LDLR(-/-)p110γ(+/-) and LDLR(-/-)p110γ(-/-) mice, and performed expression and functional assays in tissues and primary cells from these and from p110γ(+/-) and p110γ(-/-) mice. Lack of p110γ in LDLR(-/-) mice reduces the atherosclerosis burden. Atherosclerotic lesions in fat-fed LDLR(-/-)p110γ(-/-) mice were smaller than in LDLR(-/-)p110γ(+/-) controls, which coincided with decreased macrophage proliferation in LDLR(-/-)p110γ(-/-) mouse lesions. This proliferation defect was also observed in p110γ(-/-) bone marrow-derived macrophages (BMM) stimulated with macrophage colony-stimulating factor (M-CSF), and was associated with higher intracellular cyclic adenosine monophosphate (cAMP) levels. In contrast, T cell proliferation was unaffected in LDLR(-/-)p110γ(-/-) mice. Moreover, p110γ deficiency did not affect macrophage polarization towards the M1 or M2 phenotypes or apoptosis in atherosclerotic plaques, or polarization in cultured BMM. Our results suggest that higher cAMP levels and the ensuing inhibition of macrophage proliferation contribute to atheroprotection in LDLR(-/-) mice lacking p110γ. Nonetheless, p110γ deletion does not appear to be involved in apoptosis, in macrophage polarization or in T cell proliferation.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Adenosine</subject><subject>Adenosine monophosphate</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - physiopathology</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Bone marrow</subject><subject>Cell cycle</subject><subject>Cell Proliferation</subject><subject>Chemokines</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - genetics</subject><subject>Class Ib Phosphatidylinositol 3-Kinase - physiology</subject><subject>Clonal deletion</subject><subject>Colony-stimulating factor</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Defects</subject><subject>Epidemiology</subject><subject>Gene expression</subject><subject>Granulocytes</subject><subject>Immunology</subject><subject>Infiltration</subject><subject>Kinases</subject><subject>Lesions</subject><subject>Lipids</subject><subject>Lipoprotein (low density) receptors</subject><subject>Lipoproteins</subject><subject>Low density lipoprotein receptors</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Macrophage colony-stimulating factor</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Medicine</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monocytes</subject><subject>Neutrophils</subject><subject>Oncology</subject><subject>Plaques</subject><subject>Polarization</subject><subject>Proteins</subject><subject>Receptors, LDL - genetics</subject><subject>Recruitment</subject><subject>Rodents</subject><subject>T cell receptors</subject><subject>Veins &amp; arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktuFDEQhlsIRELgBggssWEzg19td2-QoijAiEiwgLXlV8945LEb240UTsB9cg_OhGemEyWIjW39_utzVbma5iWCS0Q4ereNUwrSL8cY7BJCjhmnj5pT1BO8YBiSx_fOJ82znLcQtqRj7Glzgknfo0o5bX5_XZHPYEQI_rkBxnpbXAxAlmLDJIvNYDclF2xVNjbFrP1-dRmoa5CsmbQLa7CTOsVxI9cWjCl6N9gkDxg1FRBiAWP0MrlfRzEmIMc4lgPGBeBtrnJ-3jwZpM_2xbyfNd8_XH67-LS4-vJxdXF-tdAtZmVBmTKwH1TbEosxMsQoyggdOqo4p4oxopEx3SCNQpwZyCFXRPWS6870dEDkrHl95I4-ZjE3MQtEMcekw93esTo6TJRbMSa3k-laROnEQYhpLWQqrrZCGGsw7bTuKDZU9qQzA4awJsc7hPnQVtb7-bVJ7azRNpQk_QPow5vgNmIdfwrCWwghroC3MyDFH5PNRexc1tZ7GWycDnn3uP4kJ9X65h_r_6ujR1f9s5yTHe6SQVDsB-s2SuwHS8yDVcNe3S_kLuh2kshflGvPxA</recordid><startdate>20130822</startdate><enddate>20130822</enddate><creator>Zotes, Teresa M</creator><creator>Arias, Cristina F</creator><creator>Fuster, José J</creator><creator>Spada, Roberto</creator><creator>Pérez-Yagüe, Sonia</creator><creator>Hirsch, Emilio</creator><creator>Wymann, Matthias</creator><creator>Carrera, Ana C</creator><creator>Andrés, Vicente</creator><creator>Barber, Domingo F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130822</creationdate><title>PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions</title><author>Zotes, Teresa M ; Arias, Cristina F ; Fuster, José J ; Spada, Roberto ; Pérez-Yagüe, Sonia ; Hirsch, Emilio ; Wymann, Matthias ; Carrera, Ana C ; Andrés, Vicente ; Barber, Domingo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Adenosine</topic><topic>Adenosine monophosphate</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - physiopathology</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Bone marrow</topic><topic>Cell cycle</topic><topic>Cell Proliferation</topic><topic>Chemokines</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - genetics</topic><topic>Class Ib Phosphatidylinositol 3-Kinase - physiology</topic><topic>Clonal deletion</topic><topic>Colony-stimulating factor</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Defects</topic><topic>Epidemiology</topic><topic>Gene expression</topic><topic>Granulocytes</topic><topic>Immunology</topic><topic>Infiltration</topic><topic>Kinases</topic><topic>Lesions</topic><topic>Lipids</topic><topic>Lipoprotein (low density) receptors</topic><topic>Lipoproteins</topic><topic>Low density lipoprotein receptors</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Macrophage colony-stimulating factor</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Medicine</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monocytes</topic><topic>Neutrophils</topic><topic>Oncology</topic><topic>Plaques</topic><topic>Polarization</topic><topic>Proteins</topic><topic>Receptors, LDL - genetics</topic><topic>Recruitment</topic><topic>Rodents</topic><topic>T cell receptors</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zotes, Teresa M</creatorcontrib><creatorcontrib>Arias, Cristina F</creatorcontrib><creatorcontrib>Fuster, José J</creatorcontrib><creatorcontrib>Spada, Roberto</creatorcontrib><creatorcontrib>Pérez-Yagüe, Sonia</creatorcontrib><creatorcontrib>Hirsch, Emilio</creatorcontrib><creatorcontrib>Wymann, Matthias</creatorcontrib><creatorcontrib>Carrera, Ana C</creatorcontrib><creatorcontrib>Andrés, Vicente</creatorcontrib><creatorcontrib>Barber, Domingo F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zotes, Teresa M</au><au>Arias, Cristina F</au><au>Fuster, José J</au><au>Spada, Roberto</au><au>Pérez-Yagüe, Sonia</au><au>Hirsch, Emilio</au><au>Wymann, Matthias</au><au>Carrera, Ana C</au><au>Andrés, Vicente</au><au>Barber, Domingo F</au><au>Lutgens, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-08-22</date><risdate>2013</risdate><volume>8</volume><issue>8</issue><spage>e72674</spage><epage>e72674</epage><pages>e72674-e72674</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype (M2) are involved in progression to advanced atherosclerotic lesions. We studied the role of phosphoinositol-3-kinase (PI3K) p110γ in the regulation of in situ apoptosis, macrophage proliferation and polarization towards M1 or M2 phenotypes in atherosclerotic lesions. We analyzed atherosclerosis development in LDLR(-/-)p110γ(+/-) and LDLR(-/-)p110γ(-/-) mice, and performed expression and functional assays in tissues and primary cells from these and from p110γ(+/-) and p110γ(-/-) mice. Lack of p110γ in LDLR(-/-) mice reduces the atherosclerosis burden. Atherosclerotic lesions in fat-fed LDLR(-/-)p110γ(-/-) mice were smaller than in LDLR(-/-)p110γ(+/-) controls, which coincided with decreased macrophage proliferation in LDLR(-/-)p110γ(-/-) mouse lesions. This proliferation defect was also observed in p110γ(-/-) bone marrow-derived macrophages (BMM) stimulated with macrophage colony-stimulating factor (M-CSF), and was associated with higher intracellular cyclic adenosine monophosphate (cAMP) levels. In contrast, T cell proliferation was unaffected in LDLR(-/-)p110γ(-/-) mice. Moreover, p110γ deficiency did not affect macrophage polarization towards the M1 or M2 phenotypes or apoptosis in atherosclerotic plaques, or polarization in cultured BMM. Our results suggest that higher cAMP levels and the ensuing inhibition of macrophage proliferation contribute to atheroprotection in LDLR(-/-) mice lacking p110γ. Nonetheless, p110γ deletion does not appear to be involved in apoptosis, in macrophage polarization or in T cell proliferation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23991137</pmid><doi>10.1371/journal.pone.0072674</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-08, Vol.8 (8), p.e72674-e72674
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1427238281
source Publicly Available Content Database; PubMed Central
subjects 1-Phosphatidylinositol 3-kinase
Adenosine
Adenosine monophosphate
Animal tissues
Animals
Apoptosis
Apoptosis - genetics
Arteriosclerosis
Atherosclerosis
Atherosclerosis - genetics
Atherosclerosis - physiopathology
Biochemistry
Biology
Bone marrow
Cell cycle
Cell Proliferation
Chemokines
Class Ib Phosphatidylinositol 3-Kinase - genetics
Class Ib Phosphatidylinositol 3-Kinase - physiology
Clonal deletion
Colony-stimulating factor
Cyclic AMP
Cyclic AMP - metabolism
Defects
Epidemiology
Gene expression
Granulocytes
Immunology
Infiltration
Kinases
Lesions
Lipids
Lipoprotein (low density) receptors
Lipoproteins
Low density lipoprotein receptors
Lymphocytes
Lymphocytes T
Macrophage colony-stimulating factor
Macrophages
Macrophages - cytology
Medicine
Mice
Mice, Knockout
Monocytes
Neutrophils
Oncology
Plaques
Polarization
Proteins
Receptors, LDL - genetics
Recruitment
Rodents
T cell receptors
Veins & arteries
title PI3K p110γ deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%20p110%CE%B3%20deletion%20attenuates%20murine%20atherosclerosis%20by%20reducing%20macrophage%20proliferation%20but%20not%20polarization%20or%20apoptosis%20in%20lesions&rft.jtitle=PloS%20one&rft.au=Zotes,%20Teresa%20M&rft.date=2013-08-22&rft.volume=8&rft.issue=8&rft.spage=e72674&rft.epage=e72674&rft.pages=e72674-e72674&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0072674&rft_dat=%3Cproquest_plos_%3E1429213773%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-46bd09fb553e221d3db4634f84b774b663c1dd8fadb176d0707b3b9a7c8d94f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1427238281&rft_id=info:pmid/23991137&rfr_iscdi=true